2,223 research outputs found

    NARX-based nonlinear system identification using orthogonal least squares basis hunting

    No full text
    An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, whichplaces the RBF or kernel centers at the training input data points and use a fixed common variance for all the regressors, the proposed OLS-BH technique tunes the RBF center and diagonal covariance matrix of individual regressor by minimizing the training mean square error. An efficient optimization method isadopted for this basis hunting to select regressors in an orthogonal forward selection procedure. Experimental results obtained using this OLS-BH technique demonstrate that it offers a state-of-the-art method for constructing parsimonious RBF models with excellent generalization performance

    Modelling and inverting complex-valued Wiener systems

    No full text
    We develop a complex-valued (CV) B-spline neural network approach for efficient identification and inversion of CV Wiener systems. The CV nonlinear static function in the Wiener system is represented using the tensor product of two univariate B-spline neural networks. With the aid of a least squares parameter initialisation, the Gauss-Newton algorithm effectively estimates the model parameters that include the CV linear dynamic model coefficients and B-spline neural network weights. The identification algorithm naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. An accurate inverse of the CV Wiener system is then obtained, in which the inverse of the CV nonlinear static function of the Wiener system is calculated efficiently using the Gaussian-Newton algorithm based on the estimated B-spline neural network model, with the aid of the De Boor recursions. The effectiveness of our approach for identification and inversion of CV Wiener systems is demonstrated using the application of digital predistorter design for high power amplifiers with memor

    Symmetric RBF classifier for nonlinear detection in multiple-antenna aided systems

    No full text
    In this paper, we propose a powerful symmetric radial basis function (RBF) classifier for nonlinear detection in the so-called “overloaded” multiple-antenna-aided communication systems. By exploiting the inherent symmetry property of the optimal Bayesian detector, the proposed symmetric RBF classifier is capable of approaching the optimal classification performance using noisy training data. The classifier construction process is robust to the choice of the RBF width and is computationally efficient. The proposed solution is capable of providing a signal-to-noise ratio (SNR) gain in excess of 8 dB against the powerful linear minimum bit error rate (BER) benchmark, when supporting four users with the aid of two receive antennas or seven users with four receive antenna elements. Index Terms—Classification, multiple-antenna system, orthogonal forward selection, radial basis function (RBF), symmetry

    Use of the Extended Kalman Filter for State Dependent Drift Estimation in Weakly Nonlinear Sensors

    No full text
    A number of mechanisms are responsible for the generation of reversible or irreversible drift in the response of a sensor. In this letter, we discuss three approaches for the identification of reversible state dependent drift in sensors through the use of the Extended Kalman Filter. We compare their performance by simulation and demonstrate their validity by estimating the drift of an accelerometer, modeled as a weakly nonlinear system

    Teaching old sensors New tricks: archetypes of intelligence

    No full text
    In this paper a generic intelligent sensor software architecture is described which builds upon the basic requirements of related industry standards (IEEE 1451 and SEVA BS- 7986). It incorporates specific functionalities such as real-time fault detection, drift compensation, adaptation to environmental changes and autonomous reconfiguration. The modular based structure of the intelligent sensor architecture provides enhanced flexibility in regard to the choice of specific algorithmic realizations. In this context, the particular aspects of fault detection and drift estimation are discussed. A mixed indicative/corrective fault detection approach is proposed while it is demonstrated that reversible/irreversible state dependent drift can be estimated using generic algorithms such as the EKF or on-line density estimators. Finally, a parsimonious density estimator is presented and validated through simulated and real data for use in an operating regime dependent fault detection framework

    Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 9 spacecraft, November 1984 - January 1986

    Get PDF
    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth orbiting spacecrafts: the Earth Radiation Budget Satellite (ERBS), NOAA-9, and NOAA-10. An overview is presented of the ERBE mission, in-orbit environments, and instrument design and operational features. An overview of science data processing and validation procedures is also presented. In-flight operations are described for the ERBE instruments aboard the ERBS and NOAA-9. Calibration and other operational procedures are described, and operational and instrument housekeeping data are presented and discussed
    corecore