73 research outputs found

    Hard and Soft Preparation Sets in Boolean Games

    Get PDF
    A fundamental problem in game theory is the possibility of reaching equilibrium outcomes with undesirable properties, e.g., inefficiency. The economics literature abounds with models that attempt to modify games in order to avoid such undesirable properties, for example through the use of subsidies and taxation, or by allowing players to undergo a bargaining phase before their decision. In this paper, we consider the effect of such transformations in Boolean games with costs, where players control propositional variables that they can set to true or false, and are primarily motivated to seek the satisfaction of some goal formula, while secondarily motivated to minimise the costs of their actions. We adopt (pure) preparation sets (prep sets) as our basic solution concept. A preparation set is a set of outcomes that contains for every player at least one best response to every outcome in the set. Prep sets are well-suited to the analysis of Boolean games, because we can naturally represent prep sets as propositional formulas, which in turn allows us to refer to prep formulas. The preference structure of Boolean games with costs makes it possible to distinguish between hard and soft prep sets. The hard prep sets of a game are sets of valuations that would be prep sets in that game no matter what the cost function of the game was. The properties defined by hard prep sets typically relate to goal-seeking behaviour, and as such these properties cannot be eliminated from games by, for example, taxation or subsidies. In contrast, soft prep sets can be eliminated by an appropriate system of incentives. Besides considering what can happen in a game by unrestricted manipulation of players’ cost function, we also investigate several mechanisms that allow groups of players to form coalitions and eliminate undesirable outcomes from the game, even when taxes or subsidies are not a possibility

    The joy of matching

    Get PDF
    Here, the authors discuss matching problems and how the Gale-Shapley algorithm solves them, while also explaining some matching techniques

    Characterising the Manipulability of Boolean Games

    Get PDF
    The existence of (Nash) equilibria with undesirable properties is a well-known problem in game theory, which has motivated much research directed at the possibility of mechanisms for modifying games in order to eliminate undesirable equilibria, or induce desirable ones. Taxation schemes are a well-known mechanism for modifying games in this way. In the multi-agent systems community, taxation mechanisms for incentive engineering have been studied in the context of Boolean games with costs. These are games in which each player assigns truth-values to a set of propositional variables she uniquely controls in pursuit of satisfying an individual propositional goal formula; different choices for the player are also associated with different costs. In such a game, each player prefers primarily to see the satisfaction of their goal, and secondarily, to minimise the cost of their choice, thereby giving rise to lexicographic preferences over goal-satisfaction and costs. Within this setting, where taxes operate on costs only, however, it may well happen that the elimination or introduction of equilibria can only be achieved at the cost of simultaneously introducing less desirable equilibria or eliminating more attractive ones. Although this framework has been studied extensively, the problem of precisely characterising the equilibria that may be induced or eliminated has remained open. In this paper we close this problem, giving a complete characterisation of those mechanisms that can induce a set of outcomes of the game to be exactly the set of Nash Equilibrium outcomes

    Nash equilibrium and bisimulation invariance

    Get PDF
    Game theory provides a well-established framework for the analysis of concurrent and multi-agent systems. The basic idea is that concurrent processes (agents) can be understood as corresponding to players in a game; plays represent the possible computation runs of the system; and strategies define the behaviour of agents. Typically, strategies are modelled as functions from sequences of system states to player actions. Analysing a system in such a setting involves computing the set of (Nash) equilibria in the concurrent game. However, we show that, with respect to the above model of strategies (arguably, the "standard" model in the computer science literature), bisimilarity does not preserve the existence of Nash equilibria. Thus, two concurrent games which are behaviourally equivalent from a semantic perspective, and which from a logical perspective satisfy the same temporal logic formulae, may nevertheless have fundamentally different properties (solutions) from a game theoretic perspective. Our aim in this paper is to explore the issues raised by this discovery. After illustrating the issue by way of a motivating example, we present three models of strategies with respect to which the existence of Nash equilibria is preserved under bisimilarity. We use some of these models of strategies to provide new semantic foundations for logics for strategic reasoning, and investigate restricted scenarios where bisimilarity can be shown to preserve the existence of Nash equilibria with respect to the conventional model of strategies in the computer science literature

    Characterization of dominance relations in finite coalitional games

    No full text
    McGarvey (1953) has shown that any irreflexive and anti-symmetric relation can be obtained as a relation induced by majority rule. We address the analogous issue for dominance relations of finite cooperative games with non-transferable utility (coalitional NTU games). We find any irreflexive relation over a finite set can be obtained as the dominance relation of some finite coalitional NTU game. We also show that any such dominance relation is induced by a non-cooperative game through β-effectivity. Dominance relations obtainable through α-effectivity, however, have to comply with a more restrictive condition, which we refer to as the edge-mapping property

    Computing Nash equilibria for district-based nominations

    No full text
    • …
    corecore