81 research outputs found
Relative contributions of the two eyes to perceived egocentric visual direction in normal binocular vision
AbstractPerceived egocentric direction (EVD) is based on the sensed position of the eyes in the orbit and the oculocentric visual direction (eye-centered, OVD). Previous reports indicate that in some subjects eye-position information from the two eyes contributes unequally to the perceived EVD. Findings from other studies indicate that the retinal information from the two eyes may not always contribute equally to perceived OVD. The goal of this study was to assess whether these two sources of information covary similarly within the same individuals. Open-loop pointing responses to an isolated target presented randomly at several horizontal locations were collected from 13 subjects during different magnitudes of asymmetric vergence to estimate the contribution of the position information from each eye to perceived EVD. For the same subjects, the direction at which a horizontally or vertically disparate target with different interocular contrast or luminance ratios appeared aligned with a non-disparate target estimated the relative contribution of each eyeâs retinal information. The results show that the eye-position and retinal information vary similarly in most subjects, which is consistent with a modified version of Heringâs law of visual direction
A target in real motion appears blurred in the absence of other proximal moving targets
AbstractFor exposure durations longer than about 40 msec, a field of dots in sampled motion has been reported to appear less smeared than predicted from the visual persistence of static displays. This reduction of perceived smear has been attributed to a motion âdeblurringâ mechanism. However, it has been long recognized that an isolated target moving continuously in a dark field appears to be extensively smeared. To reconcile these apparently contradictory observations, we investigated the effect of dot density on the extent of perceived smear for a single moving dot and for fields of dots with densities ranging from 0.75 to 7.5 dots/deg2. Bright targets were presented in continuous motion against a photopically illuminated background field. The results reconcile previous conflicting observations by showing that the length of perceived smear decreases systematically with dot density for exposure durations longer than about 50 msec. In three additional experiments, we arranged the spatial configuration of the targets to evaluate whether motion deblurring results primarily from a motion compensation mechanism (such as integration within the spatiotemporally oriented receptive fields of putative motion mechanisms) or from inhibition exerted by spatiotemporally adjacent targets. The results show that the activation of motion mechanisms is not a sufficient condition for motion deblurring and that the reduction of perceived smear requires the presence of spatiotemporally adjacent targets. Taken together, these findings suggest that motion deblurring results primarily from masking exerted by spatiotemporally proximal targets
Pooling signals from vertically and non-vertically orientation-tuned disparity mechanisms in human stereopsis
AbstractTo understand the role that orientation-tuned disparity-sensitive mechanisms play in the perception of stereoscopic depth, we measured stereothresholds using two sets of random-dot stimuli that produce identical stimulation of disparity mechanisms tuned to vertical orientation but dissimilar stimulation of disparity mechanisms tuned to non-vertical orientations. Either 1 or 1.5D of astigmatic blur was simulated in the random-dot images presented to both eyes, using two axis configurations. In the parallel-axis conditions, the axis of simulated astigmatic blur was same in the two eyes (0, 45 or 135 o[rientation]deg). In the orthogonal-axis conditions, the axes of astigmatic blur were orthogonal in the two eyes (LE: 180, RE: 90; LE: 90, RE: 180; LE: 45, RE: 135; and LE: 135, RE: 45). Whereas the stimulation of disparity mechanisms tuned to near-vertical orientations should be similar in the oblique parallel- and orthogonal-axis conditions, the stimulation of non-vertically tuned disparity mechanisms should be dissimilar. Measured stereothresholds were higher in the orthogonal compared to the parallel-axis condition by factors of approximately 2 and 5, for 1 and 1.5D of simulated oblique astigmatic blur, respectively. Further, for comparable magnitudes of simulated astigmatic blur, stereothresholds in the (LE: 180, RE: 90 and LE: 90, RE: 180) conditions were similar to those in the (LE: 45, RE: 135 and LE: 135, RE: 45) conditions. These results suggest that the computation of horizontal disparity includes substantial contributions from disparity mechanisms tuned to non-vertical orientations. Simulations using a modified version of a disparity-energy model [Qian, N., & Zhu, Y. (1997). Physiological computation of binocular disparity. Vision Research, 37, 1811â1827], show (1) that pooling across disparity mechanisms tuned to vertical and non-vertical orientations is required to account for our data and (2) that this pooling can provide the spatial resolution needed to encode spatially changing horizontal disparities
Attenuation of perceived motion smear during vergence and pursuit tracking
AbstractWhen the eyes move, the images of stationary objects sweep across the retina. Despite this motion of the retinal image and the substantial integration of visual signals across time, physically stationary objects typically do not appear to be smeared during eye movements. Previous studies indicated that the extent of perceived motion smear is smaller when a stationary target is presented during pursuit or saccadic eye movements than when comparable motion of the retinal image occurs during steady fixation. In this study, we compared the extent of perceived motion smear for a stationary target during smooth pursuit and vergence eye movements with that for a physically moving target during fixation. For a target duration of 100 ms or longer, perceived motion smear is substantially less when the motion of the retinal image results from vergence or pursuit eye movements than when it results from the motion of a target during fixation. The reduced extent of perceived motion smear during eye movements compared to fixation cannot be accounted for by different spatio-temporal interactions between visual targets or by unequal attention to the moving test spot under these two types of conditions. We attribute the highly similar attenuation of perceived smear during vergence and pursuit to a comparable action of the extra-retinal signals for disjunctive and conjugate eye movements
Monocular microsaccades are visual-task related
During visual fixation, we constantly move our eyes. These microscopic eye movements are composed of tremor, drift, and microsaccades. Early studies concluded that microsaccades, like larger saccades, are binocular and conjugate, as expected from Hering's law of equal innervation. Here, we document the existence of monocular microsaccades during both fixation and a discrimination task, reporting the location of the gap in a foveal, low-contrast letter C. Monocular microsaccades differ in frequency, amplitude, and peak velocity from binocular microsaccades. Our analyses show that these differences are robust to different velocity and duration criteria that have been used previously to identify microsaccades. Also, the frequency of monocular microsaccades differs systematically according to the task: monocular microsaccades occur more frequently during fixation than discrimination, the opposite of their binocular equivalents. However, during discrimination, monocular microsaccades occur more often around the discrimination threshold, particularly for each subject's dominant eye and in case of successful discrimination. We suggest that monocular microsaccades play a functional role in the production of fine corrections of eye position and vergence during demanding visual tasks
Color and motion: which is the tortoise and which is the hare?
AbstractRecent psychophysical studies have been interpreted to indicate that the perception of motion temporally either lags or is synchronous with the perception of color. These results appear to be at odds with neurophysiological data, which show that the average response-onset latency is shorter in the cortical areas responsible for motion (e.g., MT and MST) than for color processing (e.g., V4). The purpose of this study was to compare the perceptual asynchrony between motion and color on two psychophysical tasks. In the color correspondence task, observers indicated the predominant color of an 18°Ă18° field of colored dots when they moved in a specific direction. On each trial, the dots periodically changed color from red to green and moved cyclically at 15, 30 or 60 deg/s in two directions separated by 180°, 135°, 90° or 45°. In the temporal order judgment task, observers indicated whether a change in color occurred before or after a change in motion, within a single cycle of the moving-dot stimulus. In the color correspondence task, we found that the perceptual asynchrony between color and motion depends on the difference in directions within the motion cycle, but does not depend on the dot velocity. In the temporal order judgment task, the perceptual asynchrony is substantially shorter than for the color correspondence task, and does not depend on the change in motion direction or the dot velocity. These findings suggest that it is inappropriate to interpret previous psychophysical results as evidence that motion perception generally lags color perception. We discuss our data in the context of a âtwo-stage sustained-transientâ functional model for the processing of various perceptual attributes
Relationship between threshold and suprathreshold perception of position and stereoscopic depth.
We seek to determine the relationship between threshold and suprathreshold perception for position offset and stereoscopic depth perception under conditions that elevate their respective thresholds. Two threshold-elevating conditions were used: (1) increasing the interline gap and (2) dioptric blur. Although increasing the interline gap increases position (Vernier) offset and stereoscopic disparity thresholds substantially, the perception of suprathreshold position offset and stereoscopic depth remains unchanged. Perception of suprathreshold position offset also remains unchanged when the Vernier threshold is elevated by dioptric blur. We show that such normalization of suprathreshold position offset can be attributed to the topographical-map-based encoding of position. On the other hand, dioptric blur increases the stereoscopic disparity thresholds and reduces the perceived suprathreshold stereoscopic depth, which can be accounted for by a disparity-computation model in which the activities of absolute disparity encoders are multiplied by a Gaussian weighting function that is centered on the horopter. Overall, the statement equal suprathreshold perception occurs in threshold-elevated and unelevated conditions when the stimuli are equally above their corresponding thresholds describes the results better than the statement suprathreshold stimuli are perceived as equal when they are equal multiples of their respective threshold values
Contour interaction for foveal acuity targets at different luminances
Single-letter visual acuity is impaired by nearby flanking stimuli, a phenomenon known as contour interaction. We showed previously that when foveal acuity is degraded by a reduction of letter contrast, both the magnitude and angular spatial extent of foveal contour interaction remain unchanged. In this study, we asked whether contour interaction also remains unchanged when foveal visual acuity is degraded by a reduction of the targetâs background luminance.
Percent correct letter identification was measured for isolated, near-threshold black Sloan letters and for letters surrounded by 4 flanking bars in 10 normal observers, 5 at Anglia Ruskin University, UK (ARU) and 5 at Palacky University, Czech Republic (PU). A stepwise reduction in the background luminance over 3 log units resulted in an approximately threefold increase in the near-threshold letter size. At each background luminance, black flanking bars with a width equal to 1 letter stroke were presented at separations between approximately 0.45 and 4.5 min arc (ARU) or 0.32 and 3.2 min arc (PU).
The results indicate that the angular extent of contour interaction remains unchanged at approximately 4 min arc at all background luminances. On the other hand, the magnitude of contour interaction decreases systematically as luminance is reduced, from approximately a 50% reduction to a 30% reduction in percent correct. The constant angular extent and decreasing magnitude of contour interaction with a reduction of background luminance suggest foveal contour interaction is mediated by luminance-dependent lateral inhibition within a fixed angular region
The effect of a temporary absence of target velocity information on visual tracking
Experiments with the Rashbass âstep-rampâ paradigm have revealed that the initial catchup saccade that occurs near pursuit onset uses target velocity as well as position information in its programming. Information about both position and motion also influences smooth pursuit. To investigate the timing of velocity sampling near the initiation of saccades and smooth pursuit, we analyzed the eye movements made in nine âstep-rampâ conditions, produced by combining â2, 0 and +2 deg steps with â8, 0 and +8 deg/s ramps. Each trial had either no temporal gap or a 50-ms gap during which the laser target was extinguished, beginning 25, 50, 75 or 100 ms after the step. Six subjects repeated each of the resulting 45 conditions 25 times. With no temporal gap, saccades were larger in the step-ramp-awayâ than the âstep-onlyâ condition, confirming that saccade programming incorporates ramp velocity information. A temporal gap had no effect on the accuracy of saccades on âstep-onlyâ trials, but often caused undershoots in âstep-rampâ trials. A 50-ms gap within the first 100 ms also increased the latency of the initial saccade. Although initial pursuit velocity was unaffected by a temporal gap, a gap that started at 25 ms reliably delayed pursuit onset for ramp motion of the target toward the fovea. Later gaps had a minimal effect on initial pursuit latency. The similar timing of the temporal gaps in target motion information that affect the initiation of saccades and pursuit provides further behavioral evidence that the two types of eye movements share pre-motor neural mechanisms
The temporal impulse response function in infantile nystagmus.
Despite rapid to-and-fro motion of the retinal image that results from their incessant involuntary eye movements, persons with infantile nystagmus (IN) rarely report the perception of motion smear. We performed two experiments to determine if the reduction of perceived motion smear in persons with IN is associated with an increase in the speed of the temporal impulse response. In Experiment 1, increment thresholds were determined for pairs of successively presented flashes of a long horizontal line, presented on a 65-cd/m2 background field. The stimulus-onset asynchrony (SOA) between the first and second flash varied from 5.9 to 234 ms. In experiment 2, temporal contrast sensitivity functions were determined for a 3-cpd horizontal square-wave grating that underwent counterphase flicker at temporal frequencies between 1 and 40 Hz. Data were obtained for 2 subjects with predominantly pendular IN and 8 normal observers in Experiment 1 and for 3 subjects with IN and 4 normal observers in Experiment 2. Temporal impulse response functions (TIRFs) were estimated as the impulse response of a linear second-order system that provided the best fit to the increment threshold data in Experiment 1 and to the temporal contrast sensitivity functions in Experiment 2. Estimated TIRFs of the subjects with pendular IN have natural temporal frequencies that are significantly faster than those of normal observers (ca. 13 vs. 9 Hz), indicating an accelerated temporal response to visual stimuli. This increase in response speed is too small to account by itself for the virtual absence of perceived motion smear in subjects with IN, and additional neural mechanisms are considered
- âŠ