610 research outputs found
Theory of Metal-Insulator Transition in PrRu4P12 and PrFe4P12
All symmetry allowed couplings between the 4f^2-electron ground state doublet
of trivalent praseodymium in PrRu4P12 and PrFe4P12 and displacements of the
phosphorus, iron or ruthenium ions are considered. Two types of displacements
can change the crystal lattice from body-centred cubic to simple orthorhombic
or to simple cubic. The first type lowers the point group symmetry from
tetrahedral to orthorhombic, while the second type leaves it unchanged, with
corresponding space group reductions Im3 --> Pmmm and Im3 --> Pm3 respectively.
In former case, the lower point-group symmetry splits the degeneracy of the
4f^2 doublet into states with opposite quadrupole moment, which then leads to
anti-quadrupolar ordering, as in PrFe4P12. Either kind of displacement may
conspire with nesting of the Fermi surface to cause the metal-insulator or
partial metal-insulator transition observed in PrFe4P12 and PrRu4P12. We
investigate this scenario using band-structure calculations, and it is found
that displacements of the phosphorus ions in PrRu4P12 (with space group
reduction Im3 --> Pm3) open a gap everywhere on the Fermi surface.Comment: 6 page
Quasi-Kondo Phenomenon due to Dynamical Jahn-Teller Effect
A mechanism of non-magnetic Kondo effect is proposed on the basis of a
multiorbital Anderson model coupled with dynamical Jahn-Teller (JT) phonons. An
electron system coupled dynamically with JT phonons has a vibronic ground state
with double degeneracy due to clockwise and anti-clockwise rotational modes
with entropy of . When a temperature is lower than a characteristic
energy to turn the rotational direction, the rotational degree of freedom is
eventually suppressed and the corresponding entropy is released,
leading to quasi-Kondo behavior. We discuss possible relevance of this
quasi-Kondo phenomenon to electronic properties of filled skutterudites.Comment: 4 pages, 3 figure
Interpretation of the angular dependence of the de Haas-van Alphen effect in MgB_2
We present detailed results for the amplitude and field dependence of the de
Haas-van Alphen (dHvA) signal arising from the electron-like sheet of
Fermi surface in MgB_2. Our data and analysis show that the dip in dHvA
amplitude when the field is close to the basal plane is caused by a beat
between two very similar dHvA frequencies and not a spin-zero effect as
previously assumed. Our results imply that the Stoner enhancement factors in
MgB_2 are small on both the Sigma and Pi sheets.Comment: 4 pages with figures. Submitted to PR
Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12
Electronic state evolution in the metal-non-metal transition of PrRu4P12 has
been studied by X-ray and polarized neutron diffraction experiments. It has
been revealed that, in the low-temperature non-metallic phase, two inequivalent
crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2)
ground states are located at Pr1 and Pr2 sites forming the bcc unit cell
surrounded by the smaller and larger cubic Ru-ion sublattices, respectively.
This modulated electronic state can be explained by the p-f hybridization
mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f
hybridization effect plays an important role for the electronic energy gain in
the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp
Fermi surface of the filled-skutterudite superconductor LaRu4P12: A clue to the origin of the metal-insulator transition in PrRu4P12
We report the de Haas-van Alphen (dHvA) effect and magnetoresistance in the
filled-skutterudite superconductor LaRu4P12, which is a reference material of
PrRu4P12 that exhibits a metal-insulator (M-I) transition at T_MI~60 K. The
observed dHvA branches for the main Fermi surface (FS) are well explained by
the band-structure calculation, using the full potential linearized
augmented-plane-wave method with the local-density approximation, suggesting a
nesting instability with q =(1,0,0) in the main multiply connected FS as
expected also in PrRu4P12. Observed cyclotron effective masses of
(2.6-11.8)m_0, which are roughly twice the calculated masses, indicate the
large mass enhancement even in the La-skutterudites. Comparing the FS between
LaRu4P12 and PrRu4P12, an essential role of c-f hybridization cooperating with
the FS nesting in driving the the M-I transition in PrRu4P12 has been
clarified.Comment: Appeared in Physical Review
Charge-Density-Wave Ordering in the Metal-Insulator Transition Compound PrRu4P12
X-ray and electron diffraction measurements on the metal-insulator (M-I)
transition compound PrRuP have revealed the emergence of a periodic
ordering of charge density around the Pr atoms. It is found that the ordering
is associated with the onset of a low temperature insulator phase. These
conclusions are supported by the facts that the space group of the crystal
structure transforms from Im to Pm below the M-I transition
temperature and also that the temperature dependence of the superlattice peaks
in the insulator phase follows the squared BCS function. The M-I transition
could be originated from the perfect nesting of the Fermi surface and/or the
instability of the electrons.Comment: 4 pages, 5 figures, Phys. Rev. B (2004) (in press
Recommended from our members
Design, characterization, and fabrication of solar-retroreflective cool-wall materials
Raising urban albedo increases the fraction of incident sunlight returned to outer space, cooling cities and their buildings. We evaluated the angular distribution of solar radiation incident on exterior walls in 17 U S. climates to develop performance parameters for solar-retroreflective walls, then applied first-principle physics and ray-tracing simulations to explore designs. Our analysis indicates that retroreflective walls must function at large incidence angles to reflect a substantial portion of summer sunlight, and that this will be difficult to attain with materials that rely on total internal reflection. Gonio-spectrophotometer measurements of the solar spectral bi-directional reflectivity of a bicycle reflector showed little to no retroreflection at large incidence angles. Visual comparisons of retroreflection to specular first-surface reflection for four different retroreflective safety films using violet and green lasers suggest their retroreflection to be no greater than 0.09 at incidence angles up to 45°, and no greater than 0.30 at incidence angles of up to 70°. Attempts to produce a two-surface retroreflector with orthogonal mirror grooves by cutting and polishing an aluminum block indicate that residual surface roughness impedes retroreflection. Ongoing efforts focus on forming orthogonal surfaces with aluminized Mylar film, a material with very high specular reflectance across the solar spectrum. We investigated (1) folding or stamping a free film; (2) adhering the film to a pre-shaped substrate; or (3) attaching the film to a flat ductile substrate, then shaping. The latter two methods were more successful but yielded imperfect right angles
Drastic change in transport of entropy with quadrupolar ordering in PrFeP
The antiferroquadrupolar ordering of PrFeP is explored by
probing thermal and thermoelectric transport. The lattice thermal conductivity
drastically increases with the ordering, as a consequence of a large drop in
carrier concentration and a strong electron-phonon coupling. The low level of
carrier density in the ordered state is confirmed by the anomalously large
values of the Seebeck and Nernst coefficients. The results are reminiscent of
URuSi and suggest that both belong to the same class of aborted
metal-insulator transitions. The magnitude of the Nernst coefficient, larger
than in any other metal, indicates a new route for Ettingshaussen cooling at
Kelvin temperatures.Comment: final published versio
Specific heat evidence for two-gap superconductivity in ternary-iron silicide LuFeSi
We report low-temperature specific heat studies on single-crystalline
ternary-iron silicide superconductor LuFeSi with = 6.1 K
down to . We confirm a reduced normalized jump in specific heat at
, and find that the specific heat divided by temperature shows
sudden drop at and goes to zero with further decreasing
temperature. These results indicate the presence of two distinct
superconducting gaps in LuFeSi, similar to a typical two-gap
superconductor MgB. We also report Hall coefficients, band structure
calculation, and the anisotropy of upper critical fields for
LuFeSi, which support the anisotropic multiband nature and
reinforce the existence of two superconducting gaps in
LuFeSi.Comment: 5 pages, 5 figure
- …