9 research outputs found

    Visible-Light Self-Powered Photodetector and Recoverable Photocatalyst Fabricated from Vertically Aligned Sn<sub>3</sub>O<sub>4</sub> Nanoflakes on Carbon Paper

    No full text
    Self-powered photodetectors (SPPDs) are promising candidates for high-sensitivity and high-speed applications because they do not require batteries as an external power source. It is a challenge to fabricate visible-light photodetectors. Herein, vertically aligned two-dimensional (2D) Sn<sub>3</sub>O<sub>4</sub> nanoflakes on carbon fiber paper were prepared by a modified hydrothermal approach and used as a self-powered photoelectrochemical cell-type visible-light detector. The detector exhibits reproducible and flexible properties as well as an enhanced photosensitive performance. The improved photoresponse was attributed to the synergistic effects of the vertically grown Sn<sub>3</sub>O<sub>4</sub> nanoflakes and carbon fiber paper substrate; the former provided efficient active sites, as it exposed more catalytic sites to the electrolyte and absorbed more light scattered among the nanoflakes, and the latter benefited charge transport. The photocatalytic activity of the three-dimensional (3D) Sn<sub>3</sub>O<sub>4</sub> hierarchal structure on rhodamine B under visible-light irradiation was investigated and shown to have a degradation rate constant of 3.2 × 10<sup>–2</sup> min<sup>–1</sup>. The advantage over ordinal materials for use in an SPPD device is that this material is flexible and easily recoverable as a photocatalyst

    High-Performance Flexible Humidity Sensor Based on MoO<sub><i>x</i></sub> Nanoparticle Films for Monitoring Human Respiration and Non-Contact Sensing

    No full text
    Flexible humidity sensors with high sensitivity, fast response time, and outstanding reliability have the potential to revolutionize electronic skin, healthcare, and non-contact sensing. In this study, we employed a straightforward nanocluster deposition technique to fabricate a resistive humidity sensor on a flexible substrate, using molybdenum oxide nanoparticles (MoOx NPs). We systematically evaluated the humidity-sensing behaviors of the MoOx NP film-based sensor and found that it exhibited exceptional sensing capabilities. Specifically, the sensor demonstrated high sensitivity (18.2 near zero humidity), a fast response/recovery time (1.7/2.2 s), and a wide relative humidity (RH) detection range (0–95%). The MoOx NP film, with its closely spaced granular nanostructure and high NP packing density, exhibited insensitivity to mechanical deformation, small hysteresis, good repeatability, and excellent stability. We also observed that the device exhibited distinct sensing kinetics in the range of high and low RH. Specifically, for RH > 43%, the response time showed a linear prolongation with increased RH. This behavior was attributed to two factors: the higher physical adsorption energy of H2O molecules and a multilayer physical adsorption process. In terms of applications, our sensor can be easily attached to a mask and has the potential to monitor human respiration owing to its high sensing performance. Additionally, the sensor was capable of dynamically tracking RH changes surrounding human skin, enabling a non-contact sensing capability. More significantly, we tested an integrated sensor array for its ability to detect moisture distribution in the external environment, demonstrating the potential of our sensor for contactless human–machine interaction. We believe that this innovation is particularly valuable during the COVID-19 epidemic, where cross-infection may be averted by the extensive use of contactless sensing. Overall, our findings demonstrate the tremendous potential of MoOx NP-based humidity sensors for a variety of applications, including healthcare, electronic skin, and non-contact sensing

    High-Performance Flexible Humidity Sensor Based on MoO<sub><i>x</i></sub> Nanoparticle Films for Monitoring Human Respiration and Non-Contact Sensing

    No full text
    Flexible humidity sensors with high sensitivity, fast response time, and outstanding reliability have the potential to revolutionize electronic skin, healthcare, and non-contact sensing. In this study, we employed a straightforward nanocluster deposition technique to fabricate a resistive humidity sensor on a flexible substrate, using molybdenum oxide nanoparticles (MoOx NPs). We systematically evaluated the humidity-sensing behaviors of the MoOx NP film-based sensor and found that it exhibited exceptional sensing capabilities. Specifically, the sensor demonstrated high sensitivity (18.2 near zero humidity), a fast response/recovery time (1.7/2.2 s), and a wide relative humidity (RH) detection range (0–95%). The MoOx NP film, with its closely spaced granular nanostructure and high NP packing density, exhibited insensitivity to mechanical deformation, small hysteresis, good repeatability, and excellent stability. We also observed that the device exhibited distinct sensing kinetics in the range of high and low RH. Specifically, for RH > 43%, the response time showed a linear prolongation with increased RH. This behavior was attributed to two factors: the higher physical adsorption energy of H2O molecules and a multilayer physical adsorption process. In terms of applications, our sensor can be easily attached to a mask and has the potential to monitor human respiration owing to its high sensing performance. Additionally, the sensor was capable of dynamically tracking RH changes surrounding human skin, enabling a non-contact sensing capability. More significantly, we tested an integrated sensor array for its ability to detect moisture distribution in the external environment, demonstrating the potential of our sensor for contactless human–machine interaction. We believe that this innovation is particularly valuable during the COVID-19 epidemic, where cross-infection may be averted by the extensive use of contactless sensing. Overall, our findings demonstrate the tremendous potential of MoOx NP-based humidity sensors for a variety of applications, including healthcare, electronic skin, and non-contact sensing

    Factors associated with MTCT (n = 1452)<sup>*</sup>.

    No full text
    <p>Factors associated with MTCT (n = 1452)<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0138104#t003fn001" target="_blank"><sup>*</sup></a>.</p
    corecore