11,353 research outputs found

    Time-resolved multicolour photometry of bright B-type variable stars in Scorpius

    Full text link
    The first two of a total of six nano-satellites that will constitute the BRITE-Constellation space photometry mission have recently been launched successfully. In preparation for this project, we carried out time-resolved colour photometry in a field that is an excellent candidate for BRITE measurements from space. We acquired 117 h of Stromgren uvy data during 19 nights. Our targets comprised the Beta Cephei stars Kappa and Lambda Sco, the eclipsing binary Mu 1 Sco, and the variable super/hypergiant Zeta 1 Sco. For Kappa Sco, a photometric mode identification in combination with results from the spectroscopic literature suggests a dominant (l, m) = (1, -1) Beta Cephei-type pulsation mode of the primary star. The longer period of the star may be a rotational variation or a g-mode pulsation. For Lambda Sco, we recover the known dominant Beta Cephei pulsation, a longer-period variation, and observed part of an eclipse. Lack of ultraviolet data precludes mode identification for this star. We noticed that the spectroscopic orbital ephemeris of the closer pair in this triple system is inconsistent with eclipse timings and propose a refined value for the orbital period of the closer pair of 5.95189 +/- 0.00003 d. We also argue that the components of the Lambda Sco system are some 30% more massive than previously thought. The binary light curve solution of Mu 1 Sco requires inclusion of the irradiation effect to explain the u light curve, and the system could show additional low amplitude variations on top of the orbital light changes. Zeta 1 Sco shows long-term variability on a time scale of at least two weeks that we prefer to interpret in terms of a variable wind or strange mode pulsations.Comment: 7 pages, 7 figures, 3 Tables, accepted by A&

    Indications of a Large Fraction of Spectroscopic Binaries Among Nuclei of Planetary Nebulae

    Full text link
    Previous work indicates that about 10% of planetary-nebula nuclei (PNNi) are photometrically variable short-period binaries with periods of hours to a few days. These systems have most likely descended from common-envelope (CE) interactions in initially much wider binaries. Population-synthesis studies suggest that these very close pairs could be the short-period tail of a much larger post-CE binary population with periods of up to a few months. We have initiated a radial-velocity (RV) survey of PNNi with the WIYN 3.5-m telescope and Hydra spectrograph, which is aimed at discovering these intermediate-period binaries. We present initial results showing that 10 out of 11 well-observed PNNi have variable RVs, suggesting that a significant binary population may be present. However, further observations are required because we have as yet been unable to fit our sparse measurements with definite orbital periods, and because some of the RV variability might be due to variations in the stellar winds of some of our PNNi.Comment: 11 pages, 1 table, no figures. Accepted by the Astrophysical Journal Letter
    • …
    corecore