55 research outputs found

    Remote sensing of directional wave spectra using the surface contour radar

    Get PDF
    A unique radio-oceanographic remote sensing instrument was developed. The 36 GHz airborne Surface Contour Radar (SCR) remotely produces a real-time topographical map of the sea surface beneath the aircraft. It can routinely produce ocean directional wave spectra with off-line data processing. The transmitter is a coherent dual-frequency device that uses pulse compression to compensate for the limited available power at Ka band. The radar has selectable pulse widths of 1, 2, 4, and 10 nanoseconds. The transmitting antenna is a 58 lambda horn fed dielectric lens whose axis is parallel to the longitudinal axis of the aircraft. It illuminates an elliptical mirror which is oriented 45 deg to the lens' longitudinal axis to deflect the beam towards the region beneath the aircraft. The mirror is oscillated in a sinusoidal fashion through mechanical linkages driven to a variable speed motor to scan the transmitter beam (1.2 deg X 1.2 deg) with + or - 16 deg of the perpendicular to the aircraft wings in the plane perpendicular to the aircraft flight direction

    GEOSAT Follow-On (GFO) Altimeter Document Series, Volume 9. GFO and JASON Altimeter Engineering Assessment Report Update: GFO-Acceptance to December 18, 2006, JASON-Acceptance to December 24, 2006. Version 1: June 2007

    Get PDF
    The initial GFO Altimeter Engineering Assessment Report, March 2001 (NASA/TM-2001-209984/Ver.1/Vol.1) covered the GFO performance from Launch to Acceptance (10 February 1998 to 29 November 2000). The second of the series covered the performance from Acceptance to the end of Cycle 20 (29 November 2000 to 21 November 2001). The third of the series covered the performance from Acceptance to the end of Cycle 42 (29 November 2000 to 30 November 2002). The fourth of the series covered the performance from Acceptance to the end of Cycle 64 (29 November 2000 to 17 December 2003). The fifth of the series covered performance from Acceptance to the end of Cycle 86 (29 November 2000 to 17 December 2004). The sixth of the series covered performance from Acceptance to the end of Cycle 109 (29 November 2000 to 26 December 2005). In this year's GFO report, we have begun the inclusion of analyses of the JASON altimeter. In past years, JASON and TOPEX were compared during our assessment of the TOPEX altimeter; however, with the end of the TOPEX mission, we have developed methods to report on JASON as it relates to GFO. We see no change trend between the three altimeters and conclude all three are stable based on our cross comparison analyses

    GEOSAT Follow-On (GFO) Altimeter Document Series, Volume 8: GFO Altimeter Engineering Assessment Report Update:The First 109 Cycles Since Acceptance November 29, 2000 to December 26, 2005

    Get PDF
    The purpose of this document is to present and document GFO performance analyses and results. This is the fifth Assessment Report since the initial report. This report extends the performance assessment since acceptance to 26 December 2005. The initial GFO Altimeter Engineering Assessment Report, March 2001 (NASA/TM-2001-209984/Ver.1/Vol.1) covered the GFO performance from Launch to Acceptance (10 February 1998 to 29 November 2000). The second of the series covered the performance from Acceptance to the end of Cycle 20 (29 November 2000 to 21 November 2001). The third of the series covered the performance from Acceptance to the end of Cycle 42 (29 November 2000 to 30 November 2002). The fourth of the series covered the performance from Acceptance to the end of Cycle 64 (29 November 2000 to 17 December 2003). The fifth of the series covered performance from Acceptance to the end of Cycle 86 (29 November 2000 to 17 December 2004). Since launch, we have performed a variety of GFO performance studies; an accumulative index of those studies is provided in Appendix A

    GFO and JASON Altimeter Engineering Assessment Report. Update: GFO-Acceptance to End of Mission on October 22, 2008, JASON-Acceptance to September 29, 2008

    Get PDF
    The purpose of this document is to present and document GEOSAT Follow-On (GFO) performance analyses and results. This is the ninth Assessment Report since the initial report and is our final one. This report extends the performance assessment since acceptance on November 29, 2000 to the end of mission (EOM) on October 22, 2008. Since launch, February 10, 1998 to the EOM, we performed a variety of GFO performance studies; Appendix A provides an accumulative index of those studies. We began the inclusion of analyses of the JASON altimeter after the end of the Topographic Experiment (TOPEX) mission. Prior to this, JASON and TOPEX were compared during our assessment of the TOPEX altimeter. With the end of the TOPEX mission, we developed methods to report on JASON as it related to GFO. It should be noted the GFO altimeter, after operating for over 7 years, was power cycled off to on and on to off approximately 14 times a day for over 18 months in space with no failure. The GFO altimeter proved to be a remarkable instrument providing stable ocean surface measurements for nearly eight years. This report completes our GFO altimeter performance assessment

    Evidence in the learning organization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organizational leaders in business and medicine have been experiencing a similar dilemma: how to ensure that their organizational members are adopting work innovations in a timely fashion. Organizational leaders in healthcare have attempted to resolve this dilemma by offering specific solutions, such as evidence-based medicine (EBM), but organizations are still not systematically adopting evidence-based practice innovations as rapidly as expected by policy-makers (the knowing-doing gap problem). Some business leaders have adopted a systems-based perspective, called the learning organization (LO), to address a similar dilemma. Three years ago, the Society of General Internal Medicine's Evidence-based Medicine Task Force began an inquiry to integrate the EBM and LO concepts into one model to address the knowing-doing gap problem.</p> <p>Methods</p> <p>During the model development process, the authors searched several databases for relevant LO frameworks and their related concepts by using a broad search strategy. To identify the key LO frameworks and consolidate them into one model, the authors used consensus-based decision-making and a narrative thematic synthesis guided by several qualitative criteria. The authors subjected the model to external, independent review and improved upon its design with this feedback.</p> <p>Results</p> <p>The authors found seven LO frameworks particularly relevant to evidence-based practice innovations in organizations. The authors describe their interpretations of these frameworks for healthcare organizations, the process they used to integrate the LO frameworks with EBM principles, and the resulting Evidence in the Learning Organization (ELO) model. They also provide a health organization scenario to illustrate ELO concepts in application.</p> <p>Conclusion</p> <p>The authors intend, by sharing the LO frameworks and the ELO model, to help organizations identify their capacities to learn and share knowledge about evidence-based practice innovations. The ELO model will need further validation and improvement through its use in organizational settings and applied health services research.</p

    Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    Get PDF
    International audienceBACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules. Our results designate autoinducer-1 lactones as the main targets for a global biocontrol of soft-rot bacteria communications, including those of emerging isolates

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link

    GFO Altimeter Engineering Assessment Report. Update: The First 65 Cycles Since Acceptance, November 29, 2000 to December 9, 2003, Version 1

    No full text
    The U.S. Navy's Geosat Follow-On (GFO) Mission, launched February 10, 1998, is one of a series of altimetric satellites which include Seasat, Geosat, ERS-1, and TOPEX/POSEIDON (T/P). The purpose of this report is to document the GFO altimeter performance determined from the analyses and results performed by NASA's GSFC and Wallops altimeter calibration team. It is the fourth of an anticipated series of NASA's GSFC and Wallops GFO performance documents, each of which will update assessment results. This report covers the performance from instrument acceptance by the Navy on November 29, 2000, to the end of Cycle 65 on December 9, 2003. Data derived from GFO will lead to improvements in the knowledge of ocean circulation, ice sheet topography, and climate change. In order to capture the maximum amount of information from the GFO data, accurate altimeter calibrations are required for the civilian data set which NOAA will produce. Wallops Flight Facility has provided similar products for the Geosat and T/P missions and is doing the same for GFO
    corecore