1,871 research outputs found
Superconducting properties of the pyrochlore oxide Cd2Re2O7
We report the superconducting properties of the pyrochlore oxide Cd2Re2O7.
The bulk superconducting transition temperature Tc is about 1.0 K, and the
upper critical field Hc2 determined by the measurement of specific heat under
magnetic fields is 0.29 T. The superconducting coherence length is estimated to
be 34 nm. Specific heat data measured on single crystals suggest that the
superconducting gap of Cd2Re2O7 is nodeless.Comment: 6 pages, 6 figures, 1 table, to be published in J. Chem. Phys. Solid
The rp Process Ashes from Stable Nuclear Burning on an Accreting Neutron Star
We calculate the nucleosynthesis during stable nuclear burning on an
accreting neutron star. This is appropriate for weakly magnetic neutron stars
accreting at near-Eddington rates in low mass X-ray binaries, and for most
accreting X-ray pulsars. We show that the nuclear burning proceeds via the
rapid proton capture process (rp process), and makes nuclei far beyond the iron
group. The final mixture of nuclei consists of elements with a range of masses
between approximately A=60 and A=100. The average nuclear mass of the ashes is
set by the extent of helium burning via (alpha,p) reactions, and depends on the
local accretion rate.
Our results imply that the crust of these accreting neutron stars is made
from a complex mixture of heavy nuclei, with important implications for its
thermal, electrical and structural properties. A crustal lattice as impure as
our results suggest will have a conductivity set mostly by impurity scattering,
allowing more rapid Ohmic diffusion of magnetic fields than previously
estimated.Comment: To appear in the Astrophysical Journal (33 pages, LaTeX, including 11
postscript figures
Structural Phase Transition in the Superconducting Pyrochlore Oxide Cd2Re2O7
We report a structural phase transition found at Ts = 200 K in a pyrochlore
oxide Cd2Re2O7 which shows superconductivity at Tc = 1.0 K. X-ray
diffractionexperiments indicate that the phase transition is of the second
order, from a high-temperature phase with the ideal cubic pyrochlore structure
(space group Fd-3m) to a low-temperature phase with another cubic structure
(space group F-43m). It is accompanied by a dramatic change in the resistivity
and magnetic susceptibility and thus must induce a significant change in the
electronic structure of Cd2Re2O7.Comment: 4 pages, 4figures, proceeding for ISSP
Low Temperature Symmetry of Pyrochlore Oxide Cd2Re2O7
We report the X-ray study for the pyrochlore oxide Cd2Re2O7. Two
symmetry-lowering structural transitions were observed at Ts1=200K and
Ts2=120K. The former is of the second order from the ideal cubic pyrochlore
structure with space group Fd-3m to a tetragonally distorted structure with
I-4m2, while the latter is of the first order likely to another tetragonal
space group I4122. We discuss the feature of the lattice deformation.Comment: 4 pages, 4 figure
The second phase transition in the pyrochlore oxide Cd2Re2O7
Evidence for another phase transition at 120 K in the metallic pyrochlore
oxide Cd2Re2O7, following the structural transition at 200 K and followed by
the superconducting transition at 1.0 K, is given through resistivity,
magnetoresistance, specific heat, and X-ray diffraction measurements. The
results indicate unique successive structural and electronic transitions
occurring in the pyrochlore compound, revealing an interesting interplay
between the crystal and electronic structures on the itinerant electron system
in the pyrochlore lattice
High Pressure Effects on Superconductivity in the beta-pyrochlore Oxides AOs2O6 (A=K, Rb, Cs)
Recently new pyrochlore oxides superconductors AOs2O6 (A=K,Rb,Cs) were found
and we measured the pressure dependence of magnetization up to 1.2 GPa in order
to deduce the pressure effect of Tc in the three beta-pyrochlore oxides. It is
found that the initial pressure dependence of Tc is positive for all the
compounds. Only KOs2O6 exhibits a saturation in Tc at 0.56 GPa and the downturn
at higher pressureComment: 7 pages, 2 figure
Hall effect in superconducting Fe(Se0.5Te0.5) thin films
The Hall effect is investigated for eight superconducting Fe(Se_0.5_Te_0.5_)
thin films grown on MgO and LaSrAlO_4_ substrates with different transition
temperatures (T_c_). The normal Hall coefficients (R_H_) have positive values
with magnitude of 1 - 1.5 x 10^-3^ cm^3^/C at room temperature for the all
samples. With decreasing temperature, we find two characteristic types of
behavior in R_H_(T) depending on T_c_. For thin films with lower T_c_
(typically T_c_ < 5 K), R_H_ start decreasing approximately below T = 250 K
toward a negative side, some of which shows sign reversal at T = 50 - 60 K, but
turns positive toward T = 0 K. On the other hand for the films with higher T_c_
(typically T_c_ > 9 K), R_ H_ leaves almost unchanged down to T = 100 K, and
then starts decreasing toward a negative side. Around the temperatures when
R_H_ changes its sign from positive to negative, obvious nonlinearity is
observed in the field-dependence of Hall resistance as to keep the low-field
R_H_ positive while the high-field R_H_ negative. Thus the electronic state
just above T_c_ is characterized by n_e_ (electron density) > n_h_ (hole
density) with keeping \mu_e_ < \mu_h_. These results suggest the dominance of
electron density to the hole density is an essential factor for the occurence
of superconductivity in Fe-chalcogenide superconductors.Comment: 11 pages, 4 figures, revised version for Physical Review B. accepted
for publication in Physical Review
Parker-Jeans Instability of Gaseous Disks Including the Effect of Cosmic Rays
We use linear analysis to examine the effect of cosmic rays (CRs) on the
Parker-Jeans instability of magnetized self-gravitating gaseous disks. We adopt
a slab equilibrium model in which the gravity (including self-gravity) is
perpendicular to the mid-plane, the magnetic field lies along the slab. CR is
described as a fluid and only along magnetic field lines diffusion is
considered. The linearised equations are solved numerically. The system is
susceptible to Parker-Jeans instability. In general the system is less unstable
when the CR diffusion coefficient is smaller (i.e., the coupling between the
CRs and plasma is stronger). The system is also less unstable if CR pressure is
larger. This is a reminiscence of the fact that Jeans instability and Parker
instability are less unstable when the gas pressure is larger (or temperature
is higher). Moreover, for large CR diffusion coefficient (or small CR
pressure), perturbations parallel to the magnetic field are more unstable than
those perpendicular to it. The other governing factor on the growth rate of the
perturbations in different directions is the thickness of the disk or the
strength of the external pressure on the disk. In fact, this is the determining
factor in some parameter regimes.Comment: 19pages, 14figures submitted to Ap
New beta-Pyrochlore Oxide Superconductor CsOs2O6
The discovery of a new beta-pyrochlore oxide superconductor CsOs2O6 with Tc =
3.3 K is reported. It is the third superconductor in the family of
beta-pyrochlore oxides, following KOs2O6 with Tc = 9.6 K and RbOs2O6 with Tc =
6.3 K. The Tc of this series decreases with increasing the ionic radius of
alkaline metal ions, imposing negative chemical pressure upon the Os pyrochlore
lattice.Comment: submitted to J. Phys. Soc Jp
Rotational Evolution During Type I X-Ray Bursts
The rotation rates of six weakly-magnetic neutron stars accreting in low-mass
X-ray binaries have most likely been measured by Type I X-ray burst
observations with RXTE. The nearly coherent oscillations detected during the
few seconds of thermonuclear burning are most simply understood as rotational
modulation of brightness asymmetries on the neutron star surface. We show that,
as suggested by Strohmayer and colleagues, the frequency changes of 1-2 Hz
observed during bursts are consistent with angular momentum conservation as the
burning shell hydrostatically expands and contracts. We calculate how vertical
heat propagation through the radiative outer layers of the atmosphere and
convection affect the coherence of the oscillation. We show that the evolution
of the rotational profile depends strongly on whether the burning layers are
composed of pure helium or mixed hydrogen/helium. Our results help explain the
absence (presence) of oscillations from hydrogen-burning (helium-rich) bursts
that was found by Muno and collaborators.
We investigate angular momentum transport within the burning layers and the
recoupling of the burning layers with the star. We show that the
Kelvin-Helmholtz instability is quenched by the strong stratification, and that
mixing between the burning fuel and underlying ashes by the baroclinic
instability does not occur. However, the baroclinic instability may have time
to operate within the differentially rotating burning layer, potentially
bringing it into rigid rotation.Comment: To appear in The Astrophysical Journal; minor corrections made to
tables and figure
- âŠ