115,131 research outputs found
Lensing clusters of galaxies in the SDSS-III
We identify new strong lensing clusters of galaxies from the Sloan Digital
Sky Survey III (SDSS DR8) by visually inspecting color images of a large sample
of clusters of galaxies. We find 68 new clusters showing giant arcs in addition
to 30 known lensing systems. Among 68 cases, 13 clusters are "almost certain"
lensing systems with tangential giant arcs, 22 clusters are "probable" and 31
clusters are "possible" lensing systems. We also find two exotic systems with
blue rings. The giant arcs have angular separations of 2.0"-25.7" from the
bright central galaxies. We note that the rich clusters are more likely to be
lensing systems, and the separations between arcs and the central galaxies
increase with cluster richness.Comment: 13 pages, 6 figures, 1 table; accepted for publication in RAA,
corrected typo
Automatic collision avoidance of ships
One of the key elements in automatic simulation of ship manoeuvring in confined waterways is route finding and collision avoidance. This paper presents a new practical method of automatic trajectory planning and collision avoidance based on an artificial potential field and speed vector. Collision prevention regulations and international navigational rules have been incorporated into the algorithm. The algorithm is fairly straightforward and simple to implement, but has been shown to be effective in finding safe paths for all ships concerned in complex situations. The method has been applied to some typical test cases and the results are very encouraging
Boundary conditions in the Dirac approach to graphene devices
We study a family of local boundary conditions for the Dirac problem
corresponding to the continuum limit of graphene, both for nanoribbons and
nanodots. We show that, among the members of such family, MIT bag boundary
conditions are the ones which are in closest agreement with available
experiments. For nanotubes of arbitrary chirality satisfying these last
boundary conditions, we evaluate the Casimir energy via zeta function
regularization, in such a way that the limit of nanoribbons is clearly
determined.Comment: 10 pages, no figure. Section on Casimir energy adde
Discovery of a new supernova remnant G150.3+4.5
Large-scale radio continuum surveys have good potential for discovering new
Galactic supernova remnants (SNRs). Surveys of the Galactic plane are often
limited in the Galactic latitude of |b| ~ 5 degree. SNRs at high latitudes,
such as the Cygnus Loop or CTA~1, cannot be detected by surveys in such limited
latitudes. Using the available Urumqi 6 cm Galactic plane survey data, together
with the maps from the extended ongoing 6 cm medium latitude survey, we wish to
discover new SNRs in a large sky area. We searched for shell-like structures
and calculated radio spectra using the Urumqi 6 cm, Effelsberg 11 cm, and 21 cm
survey data. Radio polarized emission and evidence in other wavelengths are
also examined for the characteristics of SNRs. We discover an enclosed
oval-shaped object G150.3+4.5 in the 6 cm survey map. It is about 2.5 degree
wide and 3 degree high. Parts of the shell structures can be identified well in
the 11 cm, 21 cm, and 73.5 cm observations. The Effelsberg 21 cm total
intensity image resembles most of the structures of G150.3+4.5 seen at 6 cm,
but the loop is not closed in the northwest. High resolution images at 21 cm
and 73.5 cm from the Canadian Galactic Plane Survey confirm the extended
emission from the eastern and western shells of G150.3+4.5. We calculated the
radio continuum spectral indices of the eastern and western shells, which are
and between 6 cm and 21 cm, respectively.
The shell-like structures and their non-thermal nature strongly suggest that
G150.3+4.5 is a shell-type SNR. For other objects in the field of view,
G151.4+3.0 and G151.2+2.6, we confirm that the shell-like structure G151.4+3.0
very likely has a SNR origin, while the circular-shaped G151.2+2.6 is an HII
region with a flat radio spectrum, associated with optical filamentary
structure, H, and infrared emission.Comment: 5 pages, 3 figures, accepted for publication of Astronomy and
Astrophysic
Supersolid and charge density-wave states from anisotropic interaction in an optical lattice
We show anisotropy of the dipole interaction between magnetic atoms or polar
molecules can stabilize new quantum phases in an optical lattice. Using a well
controlled numerical method based on the tensor network algorithm, we calculate
phase diagram of the resultant effective Hamiltonian in a two-dimensional
square lattice - an anisotropic Hubbard model of hard-core bosons with
attractive interaction in one direction and repulsive interaction in the other
direction. Besides the conventional superfluid and the Mott insulator states,
we find the striped and the checkerboard charge density wave states and the
supersolid phase that interconnect the superfluid and the striped solid states.
The transition to the supersolid phase has a mechanism different from the case
of the soft-core Bose Hubbard model.Comment: 5 pages, 5 figures
Numerical simulation of the world ocean circulation
A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat
- …