86 research outputs found

    The influence of excessive consumption on residents’ family thriving: the roles of intergenerational poverty transmission and educational cognition

    Get PDF
    Whether excessive consumption triggers the intergenerational transmission of poverty, as well as the role of residents’ cognition in family thriving, is still unclear in the literature. By adopting the structural equation model and the hierarchical regression method, we empirically tested the impact of excessive consumption and intergenerational transmission of poverty on the family thriving. We found that: first, the stronger the excessive consumption of Chinese residents are, the less helpful for them to achieve family thriving; the stronger the intra- and inter-generational transmission of poverty of Chinese residents are, the less likely for them to achieve family thriving. Second, excessive consumption reduces residents’ demands on family thriving by promoting the degree of intra-generational or inter-generational transmission of poverty. Third, the effect of achieving family thriving by reducing the intra- or inter-intergenerational transmission of poverty is evident in highly education-cognitive people. Our research provides insight into how excessive consumption affects the intergenerational transmission of poverty and the family thriving. It also provides valuable decision support for poverty reduction in public sector

    Taurine alleviates Streptococcus uberis-induced inflammation by activating autophagy in mammary epithelial cells

    Get PDF
    Streptococcus uberis infection can cause serious inflammation and damage to mammary epithelial cells and tissues that can be significantly alleviated by taurine. Autophagy plays an important role in regulating immunity and clearing invasive pathogens and may be regulated by taurine. However, the relationships between taurine, autophagy, and S. uberis infection remain unclear. Herein, we demonstrate that taurine augments PTEN activity and inhibits Akt/mTOR signaling, which decreases phosphorylation of ULK1 and ATG13 by mTOR and activates autophagy. Activating autophagy accelerates the degradation of intracellular S. uberis, reduces intracellular bacterial load, inhibits over-activation of the NF-ÎşB pathway, and alleviates the inflammation and damage caused by S. uberis infection. This study increases our understanding of the mechanism through which taurine regulates autophagy and is the first to demonstrate the role of autophagy in S. uberis infected MAC-T cells. Our study also provides a theoretical basis for employing nutritional elements (taurine) to regulate innate immunity and control S. uberis infection. It also provides theoretical support for the development of prophylactic strategies for this important pathogen

    Identification and characterization of mcr mediated colistin resistance in extraintestinal Escherichia coli from poultry and livestock in China

    Get PDF
    Antimicrobial resistance to colistin has emerged worldwide threatening the efficacy of one of the last-resort antimicrobials used for the treatment of multidrug-resistant Enterobacteriaceae infection in humans. In this study, we investigated the presence of colistin resistance genes (mcr-1, mcr-2, mcr-3) in Escherichia coli strains isolated from poultry and livestock collected between 2004 and 2012 in China. Furthermore, we studied the maintenance and transfer of the mcr-1 gene in E. coli after serial passages. Overall, 2.7% (17/624) of the E. coli isolates were positive for the mcr-1 gene while none were positive for the mcr-2 and mcr-3 genes. The prevalences of mcr-1 were similar in E. coli isolates from chickens (3.2%; 13/404), pigs (0.9%; 1/113) and ducks (6.8%; 3/44) but were absent in isolates from cattle (0/63). The mcr-1 gene was maintained in the E. coli after six passages (equivalent to 60 generations). In vitro transfer of mcr-1 was evident even without colistin selection. Our data indicate the presence of mcr-1 in extraintestinal E. coli from food-producing animals in China, and suggest that high numbers of the mcr-1-positive bacteria in poultry and livestock do not appear to be readily lost after withdrawal of colistin as a food additive

    Molecular epidemiology and antimicrobial resistance of outbreaks of Klebsiella pneumoniae clinical mastitis in Chinese dairy farms

    Get PDF
    Klebsiella pneumoniae is an opportunistic pathogen that causes serious infections in humans and animals. However, the availability of epidemiological information on clinical mastitis due to K. pneumoniae is limited. To acquire new information regarding K. pneumoniae mastitis, data were mined about K. pneumoniae strains on dairy cattle farms (farms A to H) in 7 Chinese provinces in 2021. Hypermucoviscous strains of K. pneumoniae were obtained by the string test. MICs of antimicrobial agents were determined via the broth microdilution method. Ten antimicrobial resistance genes and virulence genes were identified by PCR. The prevalence of K. pneumoniae was 35.91% (65/181), and 100% of the bacteria were sensitive to enrofloxacin. Nine antimicrobial resistance genes and virulence genes were identified and compared among farms. The hypermucoviscous phenotype was present in 94.44% of isolates from farm B, which may be a function of the rmpA virulence gene. Based on these data, the multidrug-resistant strains SD-14 and HB-21 were chosen and sequenced. Genotypes were assayed for K. pneumoniae isolates from different countries and different hosts using multilocus sequence typing (MLST). Ninety-four sequence types (STs) were found, and 6 STs present a risk for spreading in specific regions. Interestingly, ST43 was observed in bovine isolates for the first time. Our study partially reveals the current distribution characteristics of bovine K. pneumoniae in China and may provide a theoretical basis for the prevention and treatment of bovine K. pneumoniae mastitis

    FABP4-mediated lipid droplet formation in Streptococcus uberis-infected macrophages supports host defence

    Get PDF
    Foamy macrophages containing prominent cytoplasmic lipid droplets (LDs) are found in a variety of infectious diseases. However, their role in Streptococcus uberis-induced mastitis is unknown. Herein, we report that S. uberis infection enhances the fatty acid synthesis pathway in macrophages, resulting in a sharp increase in LD levels, accompanied by a significantly enhanced inflammatory response. This process is mediated by the involvement of fatty acid binding protein 4 (FABP4), a subtype of the fatty acid-binding protein family that plays critical roles in metabolism and inflammation. In addition, FABP4 siRNA inhibitor cell models showed that the deposition of LDs decreased, and the mRNA expression of Tnf, Il1b and Il6 was significantly downregulated after gene silencing. As a result, the bacterial load in macrophages increased. Taken together, these data demonstrate that macrophage LD formation is a host-driven component of the immune response to S. uberis. FABP4 contributes to promoting inflammation via LDs, which should be considered a new target for drug development to treat infections

    Taurine reprograms mammary-gland metabolism and alleviates inflammation induced by Streptococcus uberis in mice

    Get PDF
    Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPK–mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis

    Allelic Variation Contributes to Bacterial Host Specificity

    Get PDF
    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts

    Identification of the Genes Involved in Riemerella anatipestifer Biofilm Formation by Random Transposon Mutagenesis

    Get PDF
    Riemerella anatipestifer causes epizootics of infectious disease in poultry that result in serious economic losses to the duck industry. Our previous studies have shown that some strains of R. anatipestifer can form a biofilm, and this may explain the intriguing persistence of R. anatipestifer on duck farms post infection. In this study we used strain CH3, a strong producer of biofilm, to construct a library of random Tn4351 transposon mutants in order to investigate the genetic basis of biofilm formation by R. anatipestifer on abiotic surfaces. A total of 2,520 mutants were obtained and 39 of them showed a reduction in biofilm formation of 47%–98% using crystal violet staining. Genetic characterization of the mutants led to the identification of 33 genes. Of these, 29 genes are associated with information storage and processing, as well as basic cellular processes and metabolism; the function of the other four genes is currently unknown. In addition, a mutant strain BF19, in which biofilm formation was reduced by 98% following insertion of the Tn4351 transposon at the dihydrodipicolinate synthase (dhdps) gene, was complemented with a shuttle plasmid pCP-dhdps. The complemented mutant strain was restored to give 92.6% of the biofilm formation of the wild-type strain CH3, which indicates that the dhdp gene is associated with biofilm formation. It is inferred that such complementation applies also to other mutant strains. Furthermore, some biological characteristics of biofilm-defective mutants were investigated, indicating that the genes deleted in the mutant strains function in the biofilm formation of R. anatipestifer. Deletion of either gene will stall the biofilm formation at a specific stage thus preventing further biofilm development. In addition, the tested biofilm-defective mutants had different adherence capacity to Vero cells. This study will help us to understand the molecular mechanisms of biofilm development by R. anatipestifer and to study the pathogenesis of R. anatipestifer further

    Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    No full text
    Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development
    • …
    corecore