1,344 research outputs found
Differentially Private Convex Optimization with Piecewise Affine Objectives
Differential privacy is a recently proposed notion of privacy that provides
strong privacy guarantees without any assumptions on the adversary. The paper
studies the problem of computing a differentially private solution to convex
optimization problems whose objective function is piecewise affine. Such
problem is motivated by applications in which the affine functions that define
the objective function contain sensitive user information. We propose several
privacy preserving mechanisms and provide analysis on the trade-offs between
optimality and the level of privacy for these mechanisms. Numerical experiments
are also presented to evaluate their performance in practice
Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope
We report the implementation of an on-chip microscope system, termed fluorescence optofluidic microscope (FOFM), which is capable of fluorescence microscopy imaging of samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused
light spots, the fluorescence emissions are collected by a filter-coated CMOS sensor, which serves as the channel’s floor. The collected data can then be processed to render fluorescence microscopy images at a resolution determined by the focused light spot size (experimentally measured as 0.65 mm FWHM). In our experiments, our established resolution was 1.0 mm due to Nyquist criterion consideration. As a demonstration, we show that such a system can be used to image the cell nuclei stained by Acridine Orange and cytoplasm labeled by Qtracker
Keyword Search on RDF Graphs - A Query Graph Assembly Approach
Keyword search provides ordinary users an easy-to-use interface for querying
RDF data. Given the input keywords, in this paper, we study how to assemble a
query graph that is to represent user's query intention accurately and
efficiently. Based on the input keywords, we first obtain the elementary query
graph building blocks, such as entity/class vertices and predicate edges. Then,
we formally define the query graph assembly (QGA) problem. Unfortunately, we
prove theoretically that QGA is a NP-complete problem. In order to solve that,
we design some heuristic lower bounds and propose a bipartite graph
matching-based best-first search algorithm. The algorithm's time complexity is
, where is the number of the keywords and is a
tunable parameter, i.e., the maximum number of candidate entity/class vertices
and predicate edges allowed to match each keyword. Although QGA is intractable,
both and are small in practice. Furthermore, the algorithm's time
complexity does not depend on the RDF graph size, which guarantees the good
scalability of our system in large RDF graphs. Experiments on DBpedia and
Freebase confirm the superiority of our system on both effectiveness and
efficiency
- …