77,328 research outputs found
Boundary conditions in the Dirac approach to graphene devices
We study a family of local boundary conditions for the Dirac problem
corresponding to the continuum limit of graphene, both for nanoribbons and
nanodots. We show that, among the members of such family, MIT bag boundary
conditions are the ones which are in closest agreement with available
experiments. For nanotubes of arbitrary chirality satisfying these last
boundary conditions, we evaluate the Casimir energy via zeta function
regularization, in such a way that the limit of nanoribbons is clearly
determined.Comment: 10 pages, no figure. Section on Casimir energy adde
Symmetries of coupled harmonic oscillators
It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2)
Stokes Parameters as a Minkowskian Four-vector
It is noted that the Jones-matrix formalism for polarization optics is a
six-parameter two-by-two representation of the Lorentz group. It is shown that
the four independent Stokes parameters form a Minkowskian four-vector, just
like the energy-momentum four-vector in special relativity. The optical filters
are represented by four-by-four Lorentz-transformation matrices. This
four-by-four formalism can deal with partial coherence described by the Stokes
parameters. A four-by-four matrix formulation is given for decoherence effects
on the Stokes parameters, and a possible experiment is proposed. It is shown
also that this Lorentz-group formalism leads to optical filters with a symmetry
property corresponding to that of two-dimensional Euclidean transformations.Comment: RevTeX, 22 pages, no figures, submitted to Phys. Rev.
- …