1,982 research outputs found

    Approximate Quantile Computation over Sensor Networks

    Get PDF
    Sensor networks have been deployed in various environments, from battle field surveillance to weather monitoring. The amount of data generated by the sensors can be large. One way to analyze such large data set is to capture the essential statistics of the data. Thus the quantile computation in the large scale sensor network becomes an important but challenging problem. The data may be widely distributed, e.g., there may be thousands of sensors. In addition, the memory and bandwidth among sensors could be quite limited. Most previous quantile computation methods assume that the data is either stored or streaming in a centralized site, which could not be directly applied in the sensor environment. In this paper, we propose a novel algorithm to compute the quantile for sensor network data, which dynamically adapts to the memory limitations. Moreover, since sensors may update their values at any time, an incremental maintenance algorithm is developed to reduce the number of times that a global recomputation is needed upon updates. The performance and complexity of our algorithms are analyzed both theoretically and empirically on various large data sets, which demonstrate the high promise of our method

    Weakly-Supervised Neural Text Classification

    Full text link
    Deep neural networks are gaining increasing popularity for the classic text classification task, due to their strong expressive power and less requirement for feature engineering. Despite such attractiveness, neural text classification models suffer from the lack of training data in many real-world applications. Although many semi-supervised and weakly-supervised text classification models exist, they cannot be easily applied to deep neural models and meanwhile support limited supervision types. In this paper, we propose a weakly-supervised method that addresses the lack of training data in neural text classification. Our method consists of two modules: (1) a pseudo-document generator that leverages seed information to generate pseudo-labeled documents for model pre-training, and (2) a self-training module that bootstraps on real unlabeled data for model refinement. Our method has the flexibility to handle different types of weak supervision and can be easily integrated into existing deep neural models for text classification. We have performed extensive experiments on three real-world datasets from different domains. The results demonstrate that our proposed method achieves inspiring performance without requiring excessive training data and outperforms baseline methods significantly.Comment: CIKM 2018 Full Pape

    Unsupervised Extraction of Representative Concepts from Scientific Literature

    Full text link
    This paper studies the automated categorization and extraction of scientific concepts from titles of scientific articles, in order to gain a deeper understanding of their key contributions and facilitate the construction of a generic academic knowledgebase. Towards this goal, we propose an unsupervised, domain-independent, and scalable two-phase algorithm to type and extract key concept mentions into aspects of interest (e.g., Techniques, Applications, etc.). In the first phase of our algorithm we propose PhraseType, a probabilistic generative model which exploits textual features and limited POS tags to broadly segment text snippets into aspect-typed phrases. We extend this model to simultaneously learn aspect-specific features and identify academic domains in multi-domain corpora, since the two tasks mutually enhance each other. In the second phase, we propose an approach based on adaptor grammars to extract fine grained concept mentions from the aspect-typed phrases without the need for any external resources or human effort, in a purely data-driven manner. We apply our technique to study literature from diverse scientific domains and show significant gains over state-of-the-art concept extraction techniques. We also present a qualitative analysis of the results obtained.Comment: Published as a conference paper at CIKM 201

    A Bayesian Approach to Discovering Truth from Conflicting Sources for Data Integration

    Full text link
    In practical data integration systems, it is common for the data sources being integrated to provide conflicting information about the same entity. Consequently, a major challenge for data integration is to derive the most complete and accurate integrated records from diverse and sometimes conflicting sources. We term this challenge the truth finding problem. We observe that some sources are generally more reliable than others, and therefore a good model of source quality is the key to solving the truth finding problem. In this work, we propose a probabilistic graphical model that can automatically infer true records and source quality without any supervision. In contrast to previous methods, our principled approach leverages a generative process of two types of errors (false positive and false negative) by modeling two different aspects of source quality. In so doing, ours is also the first approach designed to merge multi-valued attribute types. Our method is scalable, due to an efficient sampling-based inference algorithm that needs very few iterations in practice and enjoys linear time complexity, with an even faster incremental variant. Experiments on two real world datasets show that our new method outperforms existing state-of-the-art approaches to the truth finding problem.Comment: VLDB201
    corecore