59,415 research outputs found

    Atrocalopteryx melli orohainani ssp. nov. on the Island of Hainan, China (Zygoptera: Calopterygidae)

    Get PDF
    The new sp. is described from the mountain core of Hainan, southern China, where it usually occurs at altitudes not lower than 300 m asl. It lives on the same type of small, shaded rivers as the nominate ssp. on the continent, and is distinguished by its larger size, slightly less enfumed wings, and a 2.6% difference in the sequence of the barcoding portion of the mitochodrial DNA-cytochrome c oxidase subunit I gene (COI). Holotype male: Diaoluoshan mountain, 6-VIII-2011; deposited in the Inst. Hydrobiol., Jinan Univ., Guanghou. It is argued that this geographically defined ssp. evolved because of persistent poor gene flow with continental populations, caused by the lowland "panhandle" between Hainan and the continent. This barrier was probably functioning equally well during interglacials (like at present) as during pleniglacials (when Hainan was connected to the mainland), because lack of suitable environments (small sized running waters), and dry and cold conditions continued to limit the contact with A. melli of the mainland

    Optical properties of Mn4+ ions in GaN:Mn codoped with Mg acceptors

    Full text link
    The optical properties of Mn-Mg codoped epitaxial GaN were studied. Addition of Mg acceptors quenches the weak manganese-related photoluminescence (PL) band at 1.3 eV in GaN:Mn and a series of sharp PL peaks are observed at 1 eV in codoped epilayers. The change in PL spectra indicates that Mg addition stabilizes the Mn4+ charge state by decreasing the Fermi level. The 1 eV PL peaks are tentatively attributed to intra center transitions involving Mn4+ ions. Spin allowed 3d-shell 4T2-4T1 transitions and their phonon replicas are involved. The relative intensities of the sharp peaks are strongly dependent on the excitation wavelength, indicating the optically active Mn4+ centers involved in the separate peaks are different. The temperature dependence of the PL spectrum suggests the presence of at least three distinct Mn4+ complex centers.Comment: 14 pages, 3 figures, 1 table, accepted by Appl. Phys. Let

    Long-term, multiwavelength light curves of ultra-cool dwarfs: II. The evolving light curves of the T2. 5 SIMP 0136 & the uncorrelated light curves of the M9 TVLM 513

    Full text link
    We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low- mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ∼3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ∼4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ∼0.15 μm or larger, or ∼0.06 μm or smaller, with 2σ confidence

    Phonon spectral function for an interacting electron-phonon system

    Full text link
    Using exact diagonalzation techniques, we study a model of interacting electrons and phonons. The spectral width of the phonons is found to be reduced as the Coulomb interaction U is increased. For a system with two modes per site, we find a transfer of coupling strength from the upper to the lower mode. This transfer is reduced as U is increased. These results give a qualitative explanation of differences between Raman and photoemission estimates of the electron-phonon coupling constants for A3C60 (A= K, Rb).Comment: 4 pages, RevTeX, 2 eps figur

    Birthrates and delay times of Type Ia supernovae

    Full text link
    Type Ia supernovae (SNe Ia) play an important role in diverse areas of astrophysics, from the chemical evolution of galaxies to observational cosmology. However, the nature of the progenitors of SNe Ia is still unclear. In this paper, according to a detailed binary population synthesis study, we obtained SN Ia birthrates and delay times from different progenitor models, and compared them with observations. We find that the Galactic SN Ia birthrate from the double-degenerate (DD) model is close to those inferred from observations, while the birthrate from the single-degenerate (SD) model accounts for only about 1/2-2/3 of the observations. If a single starburst is assumed, the distribution of the delay times of SNe Ia from the SD model is a weak bimodality, where the WD + He channel contributes to the SNe Ia with delay times shorter than 100Myr, and the WD + MS and WD + RG channels to those with age longer than 1Gyr.Comment: 11 pages, 2 figures, accepted by Science in China Series G (Dec.30, 2009

    Colloidal Electrostatic Interactions Near a Conducting Surface

    Full text link
    Charge-stabilized colloidal spheres dispersed in deionized water are supposed to repel each other. Instead, artifact-corrected video microscopy measurements reveal an anomalous long-ranged like-charge attraction in the interparticle pair potential when the spheres are confined to a layer by even a single charged glass surface. These attractions can be masked by electrostatic repulsions at low ionic strengths. Coating the bounding surfaces with a conducting gold layer suppresses the attraction. These observations suggest a possible mechanism for confinement-induced attractions.Comment: 4 pages, 2 figure

    Zero-temperature criticality in the two-dimensional gauge glass model

    Full text link
    The zero-temperature critical state of the two-dimensional gauge glass model is investigated. It is found that low-energy vortex configurations afford a simple description in terms of gapless, weakly interacting vortex-antivortex pair excitations. A linear dielectric screening calculation is presented in a renormalization group setting that yields a power-law decay of spin-wave stiffness with distance. These properties are in agreement with low-temperature specific heat and spin-glass susceptibility data obtained in large-scale multi-canonical Monte Carlo simulations.Comment: 4 pages, 4 figure

    Optimal Survey Strategies and Predicted Planet Yields for the Korean Microlensing Telescope Network

    Get PDF
    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6m telescopes each with a 4 deg^{2} field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for, and predict the planetary yields of, KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t_{exp} = 120s, leading to the detection of ~2,200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 <= M_{p}/M_{Earth} <= 1000 and 0.4 <= a/AU <= 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan (2012), we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 <= M_{p}/M_{Earth} <= 1000 and will detect ~20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 <= M_{p}/M_{Earth} < 5, we predict KMTNet will detect ~10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ~1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.Comment: 29 pages, 31 figures, submitted to ApJ. For a brief video explaining the key results of this paper, please visit: https://www.youtube.com/watch?v=e5rWVjiO26
    corecore