77 research outputs found
The James Webb Space Telescope
The Astronomical Society of the Pacific (ASP) continues its inside look at the James Webb Space Telescope (JWST) with this Mercury feature by two scientists who have been intimately involved in the project for many years. JWST Senior Project Scientist John Mather described the early history of the project in issue 110 of Astronomy Beat; he provides a detailed current statusreport on the project in Astronomy Beat 111 (May 14, 2013)
Neptune at Summer Solstice: Zonal Mean Temperatures from Ground-Based Observations 2003-2007
Imaging and spectroscopy of Neptune's thermal infrared emission is used to
assess seasonal changes in Neptune's zonal mean temperatures between Voyager-2
observations (1989, heliocentric longitude Ls=236) and southern summer solstice
(2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple
different sources using a single self-consistent radiative-transfer model to
assess the magnitude of seasonal variability. Globally-averaged stratospheric
temperatures measured from methane emission tend towards a quasi-isothermal
structure (158-164 K) above the 0.1-mbar level, and are found to be consistent
with spacecraft observations of AKARI. This remarkable consistency, despite
very different observing conditions, suggests that stratospheric temporal
variability, if present, is 5 K at 1 mbar and 3 K at 0.1 mbar during
this solstice period. Conversely, ethane emission is highly variable, with
abundance determinations varying by more than a factor of two. The retrieved
C2H6 abundances are extremely sensitive to the details of the T(p) derivation.
Stratospheric temperatures and ethane are found to be latitudinally uniform
away from the south pole (assuming a latitudinally-uniform distribution of
stratospheric methane). At low and midlatitudes, comparisons of synthetic
Voyager-era images with solstice-era observations suggest that tropospheric
zonal temperatures are unchanged since the Voyager 2 encounter, with cool
mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50
{\mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium
suggests a symmetric meridional circulation with cold air rising at
mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the
equator and poles (super-equilibrium para-H2 conditions). The most significant
atmospheric changes are associated with the polar vortex (absent in 1989).Comment: 35 pages, 19 figures. Accepted for publication in Icaru
Comparing key compositional indicators in Jupiter with those in extra-solar giant planets
Spectroscopic transiting observations of the atmospheres of hot Jupiters around other stars, first with Hubble Space Telescope and then Spitzer, opened the door to compositional studies of exoplanets. The James Webb Space Telescope will provide such a profound improvement in signal-to-noise ratio that it will enable detailed analysis of molecular abundances, including but not limited to determining abundances of all the major carbon- and oxygen-bearing species in hot Jupiter atmospheres. This will allow determination of the carbon-to-oxygen ratio, an essential number for planet formation models and a motivating goal of the Juno mission currently around Jupiter
Mid-Infrared Spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 2. Determination of the Mean Composition of the Upper Troposphere and Stratosphere
Mid-infrared spectral observations Uranus acquired with the Infrared
Spectrometer (IRS) on the Spitzer Space Telescope are used to determine the
abundances of C2H2, C2H6, CH3C2H, C4H2, CO2, and tentatively CH3 on Uranus at
the time of the 2007 equinox. For vertically uniform eddy diffusion
coefficients in the range 2200-2600 cm2 s-1, photochemical models that
reproduce the observed methane emission also predict C2H6 profiles that compare
well with emission in the 11.6-12.5 micron wavelength region, where the nu9
band of C2H6 is prominent. Our nominal model with a uniform eddy diffusion
coefficient Kzz = 2430 cm2 sec-1 and a CH4 tropopause mole fraction of 1.6x10-5
provides a good fit to other hydrocarbon emission features, such as those of
C2H2 and C4H2, but the model profile for CH3C2H must be scaled by a factor of
0.43, suggesting that improvements are needed in the chemical reaction
mechanism for C3Hx species. The nominal model is consistent with a CH3D/CH4
ratio of 3.0+-0.2x10-4. From the best-fit scaling of these photochemical-model
profiles, we derive column abundances above the 10-mbar level of 4.5+01.1/-0.8
x 10+19 molecule-cm-2 for CH4, 6.2 +- 1.0 x 10+16 molecule-cm-2 for C2H2 (with
a value 24% higher from a different longitudinal sampling), 3.1 +- 0.3 x 10+16
molecule-cm-2 for C2H6, 8.6 +- 2.6 x 10+13 molecule-cm-2 for CH3C2H, 1.8 +- 0.3
x 10+13 molecule-cm-2 for C4H2, and 1.7 +- 0.4 x 10+13 molecule-cm-2 for CO2 on
Uranus. Our results have implications with respect to the influx rate of
exogenic oxygen species and the production rate of stratospheric hazes on
Uranus, as well as the C4H2 vapor pressure over C4H2 ice at low temperatures
- …