40 research outputs found

    Universal Density Profile for Cosmic Voids

    Full text link
    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in Λ\LambdaCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., Mon. Not. R. Astron. Soc. 442, 462 (2014)] the presented density profile is shown to be universal even across tracer type, properly describing voids defined in halo and galaxy distributions of varying sparsity, allowing us to relate various void populations by simple rescalings. This provides a powerful framework to match theory and simulations with observational data, opening up promising perspectives to constrain competing models of cosmology and gravity.Comment: 5 pages, 3 figures. Matches PRL published version after minor correction

    Probing cosmology and gravity with redshift-space distortions around voids

    Full text link
    Cosmic voids in the large-scale structure of the Universe affect the peculiar motions of objects in their vicinity. Although these motions are difficult to observe directly, the clustering pattern of their surrounding tracers in redshift space is influenced in a unique way. This allows to investigate the interplay between densities and velocities around voids, which is solely dictated by the laws of gravity. With the help of NN-body simulations and derived mock-galaxy catalogs we calculate the average density fluctuations around voids identified with a watershed algorithm in redshift space and compare the results with the expectation from general relativity and the Λ\LambdaCDM model. We find linear theory to work remarkably well in describing the dynamics of voids. Adopting a Bayesian inference framework, we explore the full posterior of our model parameters and forecast the achievable accuracy on measurements of the growth rate of structure and the geometric distortion through the Alcock-Paczynski effect. Systematic errors in the latter are reduced from 15%\sim15\% to 5%\sim5\% when peculiar velocities are taken into account. The relative parameter uncertainties in galaxy surveys with number densities comparable to the SDSS MAIN (CMASS) sample probing a volume of 1h3Gpc31h^{-3}{\rm Gpc}^3 yield σf/b/(f/b)2%\sigma_{f/b}\left/(f/b)\right.\sim2\% (20%20\%) and σDAH/DAH0.2%\sigma_{D_AH}/D_AH\sim0.2\% (2%2\%), respectively. At this level of precision the linear-theory model becomes systematics dominated, with parameter biases that fall beyond these values. Nevertheless, the presented method is highly model independent; its viability lies in the underlying assumption of statistical isotropy of the Universe.Comment: 38 pages, 14 figures. Published in JCAP. Referee comments incorporated, typos corrected, references added. Considerably improved results thanks to consideration of full covariance matrix in the MCMC analysi

    The bias of cosmic voids in the presence of massive neutrinos

    Get PDF
    Cosmic voids offer an extraordinary opportunity to study the effects of massive neutrinos on cosmological scales. Because they are freely streaming, neutrinos can penetrate the interior of voids more easily than cold dark matter or baryons, which makes their relative contribution to the mass budget in voids much higher than elsewhere in the Universe. In simulations it has recently been shown how various characteristics of voids in the matter distribution are affected by neutrinos, such as their abundance, density profiles, dynamics, and clustering properties. However, the tracers used to identify voids in observations (e.g., galaxies or halos) are affected by neutrinos as well, and isolating the unique neutrino signatures inherent to voids becomes more difficult. In this paper we make use of the DEMNUni suite of simulations to investigate the clustering bias of voids in Fourier space as a function of their core density and compensation. We find a clear dependence on the sum of neutrino masses that remains significant even for void statistics extracted from halos. In particular, we observe that the amplitude of the linear void bias increases with neutrino mass for voids defined in dark matter, whereas this trend gets reversed and slightly attenuated when measuring the relative void-halo bias using voids identified in the halo distribution. Finally, we argue how the original behaviour can be restored when considering observations of the total matter distribution (e.g. via weak lensing), and comment on scale-dependent effects in the void bias that may provide additional information on neutrinos in the future.Comment: 23 pages, 18 figure

    Dark matter voids in the SDSS galaxy survey

    Full text link
    What do we know about voids in the dark matter distribution given the Sloan Digital Sky Survey (SDSS) and assuming the ΛCDM\Lambda\mathrm{CDM} model? Recent application of the Bayesian inference algorithm BORG to the SDSS Data Release 7 main galaxy sample has generated detailed Eulerian and Lagrangian representations of the large-scale structure as well as the possibility to accurately quantify corresponding uncertainties. Building upon these results, we present constrained catalogs of voids in the Sloan volume, aiming at a physical representation of dark matter underdensities and at the alleviation of the problems due to sparsity and biasing on galaxy void catalogs. To do so, we generate data-constrained reconstructions of the presently observed large-scale structure using a fully non-linear gravitational model. We then find and analyze void candidates using the VIDE toolkit. Our methodology therefore predicts the properties of voids based on fusing prior information from simulations and data constraints. For usual void statistics (number function, ellipticity distribution and radial density profile), all the results obtained are in agreement with dark matter simulations. Our dark matter void candidates probe a deeper void hierarchy than voids directly based on the observed galaxies alone. The use of our catalogs therefore opens the way to high-precision void cosmology at the level of the dark matter field. We will make the void catalogs used in this work available at http://www.cosmicvoids.net.Comment: 15 pages, 6 figures, matches JCAP published version, void catalogs publicly available at http://www.cosmicvoids.ne

    Going beyond the Kaiser redshift-space distortion formula: a full general relativistic account of the effects and their detectability in galaxy clustering

    Full text link
    Kaiser redshift-space distortion formula describes well the clustering of galaxies in redshift surveys on small scales, but there are numerous additional terms that arise on large scales. Some of these terms can be described using Newtonian dynamics and have been discussed in the literature, while the others require proper general relativistic description that was only recently developed. Accounting for these terms in galaxy clustering is the first step toward tests of general relativity on horizon scales. The effects can be classified as two terms that represent the velocity and the gravitational potential contributions. Their amplitude is determined by effects such as the volume and luminosity distance fluctuation effects and the time evolution of galaxy number density and Hubble parameter. We compare the Newtonian approximation often used in the redshift-space distortion literature to the fully general relativistic equation, and show that Newtonian approximation accounts for most of the terms contributing to velocity effect. We perform a Fisher matrix analysis of detectability of these terms and show that in a single tracer survey they are completely undetectable. To detect these terms one must resort to the recently developed methods to reduce sampling variance and shot noise. We show that in an all-sky galaxy redshift survey at low redshift the velocity term can be measured at a few sigma if one can utilize halos of mass M>10^12 Msun (this can increase to 10-sigma or more in some more optimistic scenarios), while the gravitational potential term itself can only be marginally detected. We also demonstrate that the general relativistic effect is not degenerate with the primordial non-Gaussian signature in galaxy bias, and the ability to detect primordial non-Gaussianity is little compromised.Comment: 13 pages, 5 figures, published in PR

    Constraints on Cosmology and Gravity from the Dynamics of Voids

    Full text link
    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ωm=0.281±0.031\Omega_\mathrm{m}=0.281\pm0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089f/b=0.417\pm0.089 at median redshift zˉ=0.57\bar{z}=0.57, where bb is the galaxy bias (68%68\% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ε=1.003±0.012\varepsilon = 1.003\pm0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.Comment: 11 pages, 7 figures. Reflects published version in PRL including Supplemental Materia