192 research outputs found

    Coupling between pore formation and phase separation in charged lipid membranes

    Get PDF
    We investigated the effect of charge on the membrane morphology of giant unilamellar vesicles (GUVs) composed of various mixtures containing charged lipids. We observed the membrane morphologies by fluorescent and confocal laser microscopy in lipid mixtures consisting of a neutral unsaturated lipid [dioleoylphosphatidylcholine (DOPC)], a neutral saturated lipid [dipalmitoylphosphatidylcholine (DPPC)], a charged unsaturated lipid [dioleoylphosphatidylglycerol (DOPG()^{\scriptsize{(-)}})], a charged saturated lipid [dipalmitoylphosphatidylglycerol (DPPG()^{\scriptsize{(-)}})], and cholesterol (Chol). In binary mixtures of neutral DOPC/DPPC and charged DOPC/DPPG()^{\scriptsize{(-)}}, spherical vesicles were formed. On the other hand, pore formation was often observed with GUVs consisting of DOPG()^{\scriptsize{(-)}} and DPPC. In a DPPC/DPPG()^{\scriptsize{(-)}}/Chol ternary mixture, pore-formed vesicles were also frequently observed. The percentage of pore-formed vesicles increased with the DPPG()^{\scriptsize{(-)}} concentration. Moreover, when the head group charges of charged lipids were screened by the addition of salt, pore-formed vesicles were suppressed in both the binary and ternary charged lipid mixtures. We discuss the mechanisms of pore formation in charged lipid mixtures and the relationship between phase separation and the membrane morphology. Finally, we reproduce the results seen in experimental systems by using coarse-grained molecular dynamics simulations.Comment: 34 pages, 10 figure

    Charge-induced phase separation in lipid membranes

    Get PDF
    The phase separation in lipid bilayers that include negatively charged lipids is examined experimentally. We observed phase-separated structures and determined the membrane miscibility temperatures in several binary and ternary lipid mixtures of unsaturated neutral lipid, dioleoylphosphatidylcholine (DOPC), saturated neutral lipid, dipalmitoylphosphatidylcholine (DPPC), unsaturated charged lipid, dioleoylphosphatidylglycerol (DOPG()^{\scriptsize{(-)}}), saturated charged lipid, dipalmitoylphosphatidylglycerol (DPPG()^{\scriptsize{(-)}}), and cholesterol. In binary mixtures of saturated and unsaturated charged lipids, the combination of the charged head with the saturation of hydrocarbon tail is a dominant factor for the stability of membrane phase separation. DPPG()^{\scriptsize{(-)}} enhances phase separation, while DOPG()^{\scriptsize{(-)}} suppresses it. Furthermore, the addition of DPPG()^{\scriptsize{(-)}} to a binary mixture of DPPC/cholesterol induces phase separation between DPPG()^{\scriptsize{(-)}}-rich and cholesterol-rich phases. This indicates that cholesterol localization depends strongly on the electric charge on the hydrophilic head group rather than on the ordering of the hydrocarbon tails. Finally, when DPPG()^{\scriptsize{(-)}} was added to a neutral ternary system of DOPC/DPPC/Cholesterol (a conventional model of membrane rafts), a three-phase coexistence was produced. We conclude by discussing some qualitative features of the phase behaviour in charged membranes using a free energy approach.Comment: 17 pages, 6 figure

    Self‐Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquid‐Liquid Phase Separation

    Get PDF
    生体内の高分子混雑に着目した新規の細胞モデルの創成に成功. 京都大学プレスリリース. 2020-12-16.Recently, liquid–liquid phase separation (LLPS) has attracted considerable attention among researchers in the life sciences as a plausible mechanism for the generation of microstructures inside cells. LLPS occurs through multiple nonspecific interactions and does not always require a lock‐and‐key interaction with a binary macromolecular solution. The remarkable features of LLPS include the non‐uniform localization and concentration of solutes, resulting in the ability to isolate certain chemical systems and thereby parallelize multiple chemical reactions within the limited space of a living cell. We report that, by using the macromolecules, poly(ethylene glycol) (PEG) and dextran, that exhibit LLPS in an aqueous solution, cell‐sized liposomes are spontaneously formed therein in the presence of phospholipids. In this system, LLPS is generated through the depletion effect of macromolecules. The results showed that cell‐like microdroplets entrapping DNA wrapped by a phospholipid layer emerge in a self‐organized manner

    Self Running Droplet: Emergence of Regular Motion from Nonequilibrium Noise

    Get PDF
    Spontaneous motion of an oil droplet driven by chemical nonequilibricity is reported. It is shown that the droplet undergoes regular rhythmic motion under appropriately designed boundary conditions, whereas it exhibits random motion in an isotropic environment. This study is a novel manifestation on the direct energy transformation of chemical energy into regular spatial-motion under isothermal conditions. A simple mathematical equation including noise reproduces the essential feature of the transition from irregularity into periodic regular motion. Our results will inspire the theoretical study on the mechanism of molecular motors in living matter, working under significant influence of thermal fluctuation.Comment: 4 pages, 4 figure

    A novel method for assessing the renal biopsy specimens using an activatable fluorescent probe

    Get PDF
    Gamma-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) is an activatable fluorescent probe that can be activated by γ-glutamyltranspeptidase (GGT). The expression of GGT in the kidney, which is one of the major organs exhibiting enhanced GGT expression, is exclusively localised to the cortex. Here, we aimed to investigate the feasibility of gGlu-HMRG as a probe for the on-site assessment of renal biopsy specimens. gGlu-HMRG fluorescent probe was applied to the renal proximal tubular epithelial cells and cortical collecting duct cells in vitro, mouse kidneys ex vivo, and human biopsy specimens. In addition, the fluorescence intensities in the cortex and the medulla were comparatively evaluated in the biopsy specimens. The fluorescence signal was rapidly detected in the renal proximal tubular epithelial cells, whereas that in the cortical collecting duct cells was not detected. The fluorescence signal was detected in the mouse kidneys ex vivo without markedly affecting the tissue morphology. In the human biopsy specimens, the fluorescence signal in the cortex was significantly distinct from that in the medulla (p?<?0.05). Thus, this fluorescent probe can be used to distinctly identify the renal cortex in the biopsy specimens
    corecore