5,148 research outputs found
A Search for Exozodiacal Clouds with Kepler
Planets embedded within dust disks may drive the formation of large scale
clumpy dust structures by trapping dust into resonant orbits. Detection and
subsequent modeling of the dust structures would help constrain the mass and
orbit of the planet and the disk architecture, give clues to the history of the
planetary system, and provide a statistical estimate of disk asymmetry for
future exoEarth-imaging missions. Here we present the first search for these
resonant structures in the inner regions of planetary systems by analyzing the
light curves of hot Jupiter planetary candidates identified by the Kepler
mission. We detect only one candidate disk structure associated with KOI 838.01
at the 3-sigma confidence level, but subsequent radial velocity measurements
reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk
structure is a false positive. Using our null result, we place an upper limit
on the frequency of dense exozodi structures created by hot Jupiters. We find
that at the 90% confidence level, less than 21% of Kepler hot Jupiters create
resonant dust clumps that lead and trail the planet by ~90 degrees with optical
depths >~5*10^-6, which corresponds to the resonant structure expected for a
lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as
the zodiacal cloud.Comment: 22 pages, 6 figures, Accepted for publication in Ap
Prolyl-peptidyl isomerase, Pin1, phosphorylation is compromised in association with the expression of the HFE polymorphic allele, H63D
AbstractThere is substantial interest in HFE gene variants as putative risk factors in neurodegenerative diseases such as Alzheimer disease (AD). Previous studies in cell models have shown the H63D HFE variant to result in increased cellular iron, oxidative stress, glutamate dyshomeostasis, and an increase in tau phosphorylation; all processes thought to contribute to AD pathology. Pin1 is a prolyl-peptidyl cis/trans isomerase that can regulate the dephosphorylation of the amyloid and tau proteins. Hyperphosphorylation of these later proteins is implicated in the pathogenesis of AD and Pin1 levels are reportedly decreased in AD brains. Because of the relationship between Pin1 loss of function by oxidative stress and the increase in oxidative stress in cells with the H63D polymorphism it was logical to interrogate a relationship between Pin1 and HFE status. To test our hypothesis that H63D HFE would be associated with less Pin1 activity, we utilized stably transfected human neuroblastoma SH-SY5Y cell lines expressing the different HFE polymorphisms. Under resting conditions, total Pin1 levels were unchanged between the wild type and H63D HFE cells, yet there was a significant increase in phosphorylation of Pin1 at its serine 16 residue suggesting a loss of Pin1 activity in H63D variant cells. To evaluate whether cellular iron status could influence Pin1, we treated the WT HFE cells with exogenous iron and found that Pin1 phosphorylation increased with increasing levels of iron. Iron exposure to H63D variant cells did not impact Pin1 phosphorylation beyond that already seen suggesting a ceiling effect. Because HFE H63D cells have been shown to have more oxidative stress, the cells were treated with the antioxidant Trolox which resulted in a decrease in Pin1 phosphorylation in H63D cells with no change in WT HFE cells. In a mouse model carrying the mouse equivalent of the H63D allele, there was an increase in the phosphorylation status of Pin1 providing in vivo evidence for our findings in the cell culture model. Thus, we have shown another cellular mechanism that HFE polymorphisms influence; further supporting their role as neurodegenerative disease modifiers
A Review of Target Mass Corrections
With recent advances in the precision of inclusive lepton--nuclear scattering
experiments, it has become apparent that comparable improvements are needed in
the accuracy of the theoretical analysis tools. In particular, when extracting
parton distribution functions in the large-x region, it is crucial to correct
the data for effects associated with the nonzero mass of the target. We present
here a comprehensive review of these target mass corrections (TMC) to structure
functions data, summarizing the relevant formulas for TMCs in electromagnetic
and weak processes. We include a full analysis of both hadronic and partonic
masses, and trace how these effects appear in the operator product expansion
and the factorized parton model formalism, as well as their limitations when
applied to data in the x->1 limit. We evaluate the numerical effects of TMCs on
various structure functions, and compare fits to data with and without these
corrections.Comment: 41 pages, 13 figures; minor updates to match published versio
Are superflares on solar analogues caused by extra-solar planets?
Stellar flares with times more energy than the largest solar
flare have been detected from 9 normal F and G main sequence stars (Schaefer,
King & Deliyannis 1999). These superflares have durations of hours to days and
are visible from at least x-ray to optical frequencies. The absence of
world-spanning aurorae in historical records and of anomalous extinctions in
the geological record indicate that our Sun likely does not suffer superflares.
In seeking to explain this new phenomenon, we are struck by its similarity to
large stellar flares on RS Canum Venaticorum binary systems, which are caused
by magnetic reconnection events associated with the tangling of magnetic fields
between the two stars. The superflare stars are certainly not of this class,
although we propose a similar flare mechanism. That is, superflares are caused
by magnetic reconnection between fields of the primary star and a close-in
Jovian planet. Thus, by only invoking known planetary properties and
reconnection scenarios, we can explain the energies, durations, and spectra of
superflares, as well as explain why our Sun does not have such events.Comment: 13 pages, Accepted for publication in Ap
Rate of first recorded diagnosis of autism and other pervasive developmental disorders in United Kingdom general practice, 1988 to 2001.
BACKGROUND: There has been concern that the incidence of autism and other pervasive developmental disorders (PDDs) is increasing. Previous studies have been smaller, restricted to autism (excluding other pervasive developmental disorders such as Asperger's syndrome), included boys only, or have not been based on a national sample. We investigated time trends in the rates of diagnosis of pervasive developmental disorders. METHODS: We analysed the rates of first diagnosis of pervasive developmental disorders among people registered with a practice contributing to the United Kingdom General Practice Research Database during the period 1988 to 2001. We included 1410 cases from over 14 million person-years of observation. The main outcome measures were rates of diagnosis of pervasive developmental disorders by year of diagnosis, year of birth, gender and geographical region. RESULTS: The rate increased progressively from 0.40/10,000 person-years (95% CI 0.30 to 0.54) in 1991 to 2.98/10,000 (95% CI 2.56 to 3.47) in 2001. A similar change occurred in the age standardised incidence ratios, from 35 (95% CI: 26-47) in 1991 to 365 (95% CI: 314-425) in 2001. The temporal increase was not limited to children born during specific years nor to children diagnosed in a specific time period. The rate of diagnosis of PDDs other than autism rose from zero for the period 1988-1992 to 1.06/10,000 person-years in 2001. The rate of diagnosis of autism also increased but to a lesser extent. There was marked geographical variation in rates, with standardised incidence ratios varying from 66 for Wales to 141 for the South East of England. CONCLUSIONS: Better ascertainment of diagnosis is likely to have contributed to the observed temporal increase in rates of diagnosis of PDD, but we cannot exclude a real increase
Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.
We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models
The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies
We present deep near-infrared JHK imaging of four 10'x10' fields. The
observations were carried out as part of the Multiwavelength Survey by
Yale-Chile (MUSYC) with ISPI on the CTIO 4m telescope. The typical point source
limiting depths are J~22.5, H~21.5, and K~21 (5sigma; Vega). The effective
seeing in the final images is ~1.0". We combine these data with MUSYC UBVRIz
imaging to create K-selected catalogs that are unique for their uniform size,
depth, filter coverage, and image quality. We investigate the rest-frame
optical colors and photometric redshifts of galaxies that are selected using
common color selection techniques, including distant red galaxies (DRGs),
star-forming and passive BzKs, and the rest-frame UV-selected BM, BX, and Lyman
break galaxies (LBGs). These techniques are effective at isolating large
samples of high redshift galaxies, but none provide complete or uniform samples
across the targeted redshift ranges. The DRG and BM/BX/LBG criteria identify
populations of red and blue galaxies, respectively, as they were designed to
do. The star-forming BzKs have a very wide redshift distribution, a wide range
of colors, and may include galaxies with very low specific star formation
rates. In comparison, the passive BzKs are fewer in number, have a different
distribution of K magnitudes, and have a somewhat different redshift
distribution. By combining these color selection criteria, it appears possible
to define a reasonably complete sample of galaxies to our flux limit over
specific redshift ranges. However, the redshift dependence of both the
completeness and sampled range of rest-frame colors poses an ultimate limit to
the usefulness of these techniques.Comment: 17 pages in emulateapj style, 13 figures. Submitted to the
Astronomical Journal. Data will be made available upon publicatio
- âŠ