38 research outputs found

    Acoustic Purification of Extracellular Microvesicles

    No full text
    Microvesicles (MVs) are an increasingly important source for biomarker discovery and clinical diagnostics. The small size of MVs and their presence in complex biological environment, however, pose technical challenges in sample preparation, particularly when sample volumes are small. We herein present an acoustic nanofilter system that size-specifically separates MVs in a continuous and contact-free manner. The separation uses ultrasound standing waves to exert differential acoustic force on MVs according to their size and density. By optimizing the design of the ultrasound transducers and underlying electronics, we were able to achieve a high separation yield and resolution. The “filter size-cutoff” can be controlled electronically <i>in situ</i>, which enables versatile MV-size selection. We applied the acoustic nanofilter to isolate nanoscale (<200 nm) vesicles from cell culture media as well as MVs in stored red blood cell products. With the capacity for rapid and contact-free MV isolation, the developed system could become a versatile preparatory tool for MV analyses

    Nanostar Clustering Improves the Sensitivity of Plasmonic Assays

    No full text
    Star-shaped Au nanoparticles (Au nanostars, AuNS) have been developed to improve the plasmonic sensitivity, but their application has largely been limited to single-particle probes. We herein describe a AuNS clustering assay based on nanoscale self-assembly of multiple AuNS and which further increases detection sensitivity. We show that each cluster contains multiple nanogaps to concentrate electric fields, thereby amplifying the signal via plasmon coupling. Numerical simulation indicated that AuNS clusters assume up to 460-fold higher field density than Au nanosphere clusters of similar mass. The results were validated in model assays of protein biomarker detection. The AuNS clustering assay showed higher sensitivity than Au nanosphere. Minimizing the size of affinity ligand was found important to tightly confine electric fields and improve the sensitivity. The resulting assay is simple and fast and can be readily applied to point-of-care molecular detection schemes

    High-throughput intensity diffraction tomography with a computational microscope

    No full text
    We demonstrate a motion-free intensity diffraction tomography technique that enables direct inversion of 3D phase and absorption from intensity-only measurements for weakly scattering samples. We derive a novel linear forward model, featuring slice-wise phase and absorption transfer functions using angled illumination. This new framework facilitates flexible and efficient data acquisition, enabling arbitrary sampling of the illumination angles. The reconstruction algorithm performs 3D synthetic aperture using a robust, computation and memory efficient slice-wise deconvolution to achieve resolution up to the incoherent limit. We demonstrate our technique with thick biological samples having both sparse 3D structures and dense cell clusters. We further investigate the limitation of our technique when imaging strongly scattering samples. Imaging performance and the influence of multiple scattering is evaluated using a 3D sample consisting of stacked phase and absorption resolution targets. This computational microscopy system is directly built on a standard commercial microscope with a simple LED array source add-on, and promises broad applications by leveraging the ubiquitous microscopy platforms with minimal hardware modifications

    Photocleavable DNA Barcode–Antibody Conjugates Allow Sensitive and Multiplexed Protein Analysis in Single Cells

    No full text
    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode–antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells

    Normalizing the Optical Signal Enables Robust Assays with Lateral Flow Biosensors

    No full text
    Lateral flow assays (LFAs) are widely adopted for fast, on-site molecular diagnostics. Obtaining high-precision assay results, however, remains challenging and often requires a dedicated optical setup to control the imaging environment. Here, we describe quick light normalization exam (qLiNE) that transforms ubiquitous smartphones into a robust LFA reader. qLiNE used a reference card, printed with geometric patterns and color standards, for real-time optical calibration: a photo of an LFA test strip was taken along with the card, and the image was processed using a smartphone app to correct shape distortion, illumination brightness, and color imbalances. This approach yielded consistent optical signal, enabling quantitative molecular analyses under different illumination conditions. We adapted qLiNE to detect cortisol, a known stress hormone, in saliva samples at point-of-use settings. The assay was fast (15 min) and sensitive (detection limit, 0.16 ng/mL). The serial qLiNE assay detected diurnal cycles of cortisol levels as well as stress-induced cortisol increase

    Precise nanosizing with high dynamic range holography

    No full text
    Optical sensing is one of the key-enablers of modern diagnostics. Especially label-free imaging modalities hold great promise as they eliminate labeling procedures prior to analysis. However, scattering signals of nanometric particles scale with their volume-square. This unfavorable scaling makes it extremely difficult to quantitatively characterize intrinsically heterogeneous clinical samples, such as extracellular vesicles, as their signal variation easily exceeds the dynamic range of currently available cameras. Here, we introduce off-axis k-space holography that circumvents this limitation. By imaging the back-focal-plane of our microscope we project the scattering signal of all particles onto all camera pixels thus dramatically boosting the achievable dynamic range to up-to 110 dB. We validate our platform by detecting, and quantitatively sizing, metallic and dielectric particles over a 200x200 μ\mum field-of-view and demonstrate that independently performed signal calibrations allow correctly sizing particles made from different materials. Finally, we present quantitative size-distributions of extracellular vesicle samples

    Integrated Magneto–Electrochemical Sensor for Exosome Analysis

    No full text
    Extracellular vesicles, including exosomes, are nanoscale membrane particles that carry molecular information on parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magneto–electrochemical assay: exosomes are immunomagnetically captured from patient samples and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables (i) highly sensitive, cell-specific exosome detection and (ii) sensor miniaturization and scale-up for high-throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the simultaneous profiling of multiple protein markers within an hour, outperforming conventional methods in assay sensitivity and speed

    Probing Intracellular Biomarkers and Mediators of Cell Activation Using Nanosensors and Bioorthogonal Chemistry

    No full text
    Nanomaterials offer unique physical properties that make them ideal biosensors for scant cell populations. However, specific targeting of nanoparticles to intracellular proteins has been challenging. Here, we describe a technique to improve intracellular biomarker sensing using nanoparticles that is based on bioorthogonal chemistry. Using trans-cyclooctene-modified affinity ligands that are administered to semipermeabilized cells and revealed by cycloaddition reaction with tetrazine-conjugated nanoparticles, we demonstrate site-specific amplification of nanomaterial binding. We also show that this technique is capable of sensing protein biomarkers and phosho-protein signal mediators, both within the cytosol and nucleus, via magnetic or fluorescent modalities. We expect the described method will have broad applications in nanomaterial-based diagnostics and therapeutics

    Incorporation of Iron Oxide Nanoparticles and Quantum Dots into Silica Microspheres

    No full text
    We describe the synthesis of magnetic and fluorescent silica microspheres fabricated by incorporating maghemite (γ-Fe2O3) nanoparticles (MPs) and CdSe/CdZnS core/shell quantum dots (QDs) into a silica shell around preformed silica microspheres. The resultant ∼500 nm microspheres have a narrow size distribution and show uniform incorporation of QDs and MPs into the shell. We have demonstrated manipulation of these microspheres using an external magnetic field with real-time fluorescence microscopy imaging

    Normalizing the Optical Signal Enables Robust Assays with Lateral Flow Biosensors

    No full text
    Lateral flow assays (LFAs) are widely adopted for fast, on-site molecular diagnostics. Obtaining high-precision assay results, however, remains challenging and often requires a dedicated optical setup to control the imaging environment. Here, we describe quick light normalization exam (qLiNE) that transforms ubiquitous smartphones into a robust LFA reader. qLiNE used a reference card, printed with geometric patterns and color standards, for real-time optical calibration: a photo of an LFA test strip was taken along with the card, and the image was processed using a smartphone app to correct shape distortion, illumination brightness, and color imbalances. This approach yielded consistent optical signal, enabling quantitative molecular analyses under different illumination conditions. We adapted qLiNE to detect cortisol, a known stress hormone, in saliva samples at point-of-use settings. The assay was fast (15 min) and sensitive (detection limit, 0.16 ng/mL). The serial qLiNE assay detected diurnal cycles of cortisol levels as well as stress-induced cortisol increase
    corecore