13 research outputs found

    Separation, characterization and anti-inflammatory activities of galactoglycerolipids from <i>Perilla frutescens</i> (L.) Britton

    No full text
    The study was to optimize the separation procedures, characterize the galactoglycerolipids and explore their anti-inflammatory activities. Two monogalactosyldiacylglycerols (MGDGs) and three digalactosyldiacylglycerols (DGDGs) from Perilla frutescens (L.) Britton were obtained through one-step silica gel column chromatography and preparative high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD). The presence of additional MGDG (1-O-9Z,12Z,15Z-octadecatrienoyl-2-O-7Z,10Z,13Z-hexadecatrienoyl-3-O-(β-D-galactopyranosyl)-sn-glycerol) and DGDG (1-O-9Z,12Z-octadecadienoyl-2-O-9Z,12Z,15Z-octadecatrienoyl-3-O-(β-D-galactopyranosyl-(1'→6'')-α-D-galactopyranosyl)-sn-glycerol) was concluded for the first time in perilla, by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). In lipopolysaccharide (LPS)-induced RAW264.7 cells, five galactoglycerolipids exhibited good inhibitory activities against nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression in a dose-dependent manner, suggesting that fatty acid chain length and unsaturation degree affected their anti-inflammatory activities.</p

    A Novel Class IIb Bacteriocin-Plantaricin EmF Effectively Inhibits Listeria monocytogenes and Extends the Shelf Life of Beef in Combination with Chitosan

    No full text
    Plantaricin EmF separated and identified from L. plantarum 163 was a novel class IIb bacteriocin. The molecular masses of plantaricin Em and F were 1638 and 3702 Da, respectively, with amino acid sequences FNRGGYNFGKSVRH and VFHAYSARGVRNNYKSAVGPADWVISAVRGFIHG, respectively. Plantaricin EmF not only exhibited broad-pH adaptability and thermostability but also showed high efficiency and broad-spectrum antibacterial activity. Its mode of action on L. monocytogenes damaged cell membrane integrity, resulting in the leakage of cytoplasm, changes in cell structure and morphology, and ultimately cell death. Additionally, plantaricin EmF inactivated L. monocytogenes in beef, effectively improving the quality indices of beef, thereby extending its shelf life, especially in combination with chitosan. Plantaricin EmF + 1.0% chitosan extended the shelf life of beef to 15 d, demonstrating its potential application value to replace chemical preservatives to control food-borne pathogenic microorganisms and extend the shelf life of meat and meat products in agriculture and the food industry

    Enzymatic synthesis and antitumor evaluation of mono- and diesters of 3<i>-</i>O<i>-β-</i>D<i>-</i>galactopyranosyl<i>-</i>sn-glycerol

    No full text
    Lipase-catalyzed synthesis of mono- and diesters of 3-O-β-D-galactopyranosyl-sn- glycerol (β-GG) with caproic acid was performed in acetone. The simultaneous production of 1(6’)-monoesters and 1,6’-diesters of β-GG was achieved in this reaction. In order to improve the yield of β-GG esters, four process parameters, enzyme concentration (15 ∼ 25 mg/mL), and substrate molar ratio (caproic acid: β-GG= 1.60 ∼ 2.00 mmol: 0.10 mmol), reaction temperature (40 ∼ 60 °C), and reaction time (8 ∼ 12 h), were optimized via response surface methodology (RSM) employing a three-level-four-variable central composite design. Results showed that enzyme concentration had the most significant (p β-GG esters. The optimal reaction conditions in acetone were given as follows: Novozyme435 concentration 18.65 mg/mL, molar rate of caproic acid to β-GG 19.46:1, reaction temperature 48 °C, and reaction time 9.83 h. The yield of β-GG esters reached 88.08% under above optimized conditions, which was very close to the predicted value 87.95%. The molar ratio of monoester to diesters was 0.39:0.61. β-GG esters with other fatty acyl chains were synthesized based on the optimized conditions. In vitro antitumor activity indicated that the antitumor activity of β-GG esters was dependent on the nature of fatty acids, such as the length of acyl chain, the degree of saturation, as well as the number of acyl chain.</p

    Maltose-Enhanced Exopolysaccharide Synthesis of Lactiplantibacillus plantarum through CRP-like Protein

    No full text
    Carbon sources alter the synthesis of exopolysaccharides (EPS) in Lactiplantibacillus plantarum. Maltose increased the EPS production of L. plantarum 163 6.5-fold. Subsequently, EPS production, transcriptome, and proteome were analyzed using glucose or maltose to further clarify the regulatory mechanism. A cAMP receptor protein (UniProtKB: F9UNI5) has been identified to control EPS synthesis in the presence of cAMP by binding to the EPS synthesis promoter Pcps4A‑J. Overexpression of the cAMP synthesis gene cyaA increased cAMP content and EPS production 4.5- and 2.2-fold, respectively. Furthermore, yogurt produced with L. plantarum 163-cyaA had a similar viscosity to that of commercial Greek yogurt; it had 20 and 83.7% greater viscosity than that produced with L. plantarum 163 with maltose and glucose, respectively. These findings indicated that L. plantarum 163-cyaA has potential applications in the production of functional fermented dairy products

    Purification, Characterization, and Mode of Action of Plantaricin GZ1-27, a Novel Bacteriocin against <i>Bacillus cereus</i>

    No full text
    Bacillus cereus is an opportunistic pathogen that causes foodborne diseases. We isolated a novel bacteriocin, designated plantaricin GZ1-27, and elucidated its mode of action against B. cereus. Plantaricin GZ1-27 was purified using ammonium sulfate precipitation, gel-filtration chromatography, and RP-HPLC. MALDI-TOF/MS revealed that its molecular mass was 975 Da, and Q-TOF-MS/MS analysis predicted the amino acid sequence as VSGPAGPPGTH. Plantaricin GZ1-27 showed thermostability and pH stability. The antibacterial mechanism was investigated using flow cytometry, confocal laser-scanning microscopy, scanning and transmission electron microscopy, and RT-PCR, which revealed that GZ1-27 increased cell membrane permeability, triggered K+ leakage and pore formation, damaged cell membrane integrity, altered cell morphology and intracellular organization, and reduced the expression of genes related to cytotoxin production, peptidoglycan synthesis, and cell division. These results suggest that plantaricin GZ1-27 effectively inhibits B. cereus at both the cellular and the molecular levels and is a potential natural food preservative targeting B. cereus

    Structure–Function Analysis of a Quinone-Dependent Dehydrogenase Capable of Deoxynivalenol Detoxification

    No full text
    The pyrroloquinoline quinone (PQQ)-dependent dehydrogenase DepA detoxifies deoxynivalenol (DON) by converting the C3–OH into a keto group. Herein, two crystal structures of DepA and its complex with PQQ were determined, together with biochemical evidence confirming the interactions of DepA with PQQ and DON and revealing a unique tyrosine residue important for substrate selection. Furthermore, four loops over the active site essential for DepA activity were identified, of which three loops were stabilized by PQQ, and the fourth loop invisible in both structures was considered important for binding DON, together constituting a lid for the active site. Preliminary engineering of the loop showed its potential for enzyme improvement. This study provides structural insights into how a PQQ-dependent dehydrogenase is equipped with the function of DON conversion and for the first time shows the necessity of a lid structure for PQQ-dependent dehydrogenase activity, laying foundation for structure-based design to enhance catalysis efficiency

    Additional file 1: of Consensus design for improved thermostability of lipoxygenase from Anabaena sp. PCC 7120

    No full text
    Table S1. Saturation mutagenesis primers. Figure S1. Purification of wild-type and mutants. M: Marker, 1:wild, 2: N130D, 3: G260A, 4: S437T, 5: N130D/S437Y, 6: N130D/G260Q. Crude enzyme was loaded onto Ni-NTA resin to purify the protein, utilizing the His-tag encoded by pET-32a. SDS-PAGE analysis was performed on a 12% running gel and were visualized by Coomassie Brilliant Blue G-250 staining. Figure S2. Tm values of enzymes determined by differential scanning calorimetry. Figure S3. Circular dichroism of wild-type and mutants. (DOC 320 kb

    Discovery of a Novel Antimicrobial Lipopeptide, Brevibacillin V, from <i>Brevibacillus laterosporus</i> fmb70 and Its Application on the Preservation of Skim Milk

    No full text
    Increasing cases of infections by foodborne pathogenic bacteria resulted in a great demand to find safe and novel antimicrobial compounds that can be used in the food industry. The isolation and application of antimicrobial peptides including lipopeptides has been increasing tremendously in the past years. In this study, a new bacterial strain called Brevibacillus laterosporus fmb70 (fmb70) was isolated and exhibited strong antimicrobial activities against Gram-positive, Gram-negative bacteria, and fungi. Two major antimicrobial components produced by fmb70 were respectively identified as lipopeptide: brevibacillin V (MW: 1570.12 Da) and brevibacillin (MW: 1583.75 Da), of which brevibacillin V was a new compound. Both of them consisted of 13 amino acids and C6 fatty acyl (FA) chain. Brevibacillin V and brevibacillin showed significant antimicrobial activities against most foodborne pathogenic bacteria and phytopathogenic fungi. They stayed activity at 100 °C and remained 50% of their antimicrobial activities at pH 3 for 22 h. Hemolytic activities of them were lower than 8%. They effectively eliminated the S. aureus GIM 1.142 and L. monocytogenes ATCC 21633 in skim milk. In conclusion, the Brevibacillus laterosporus fmb70 and its major antimicrobial components has remarkable potentials in the food industry

    Insights into the Antimicrobial Activity and Cytotoxicity of Engineered α‑Helical Peptide Amphiphiles

    No full text
    Antimicrobial peptides (AMPs) have gained increasing attention, as they can overcome recurring microbial invasions. However, their poor antimicrobial activity and potential cytotoxicity remain impediments to their clinical applications as novel therapeutic agents. To enhance the antimicrobial activity and cell selectivity of AMPs, a series of amphiphilic peptides based on leucocin A were designed by substituting noncharged hydrophilic residues with arginine and leucine. Of the engineered peptides, peptide <b>7</b> (WRL3) (WLRAFR­RLVRRL­ARGLRR-NH2) exhibited the highest cell selectivity toward bacterial cells over erythrocytes and macrophages. Fluorescent measurements and microscopic observations demonstrated that <b>7</b> increased cell membrane permeability and disrupted membrane envelope integrity, and eventually led to whole cell lysis. Additionally, flow cytometry analysis and subcellular localization studies revealed that <b>7</b> showed potent cytotoxicity against human hepatoma cells HepG2. In summary, the data indicate that these engineered peptides, in particular <b>7</b>, have enormous promise for antibacterial and/or antitumor therapeutics
    corecore