40 research outputs found

    Effect of Wettability on the Collision Behavior of Acoustically Excited Droplets

    No full text
    Acoustic droplet ejection (ADE) is a noncontact technique for micro-liquid handling (usually nanoliters or picoliters) that is not restricted by nozzles and enables high-throughput liquid dispensing without sacrificing precision. It is widely regarded as the most advanced solution for liquid handling in large-scale drug screening. Stable coalescence of the acoustically excited droplets on the target substrate is a fundamental requirement during the application of the ADE system. However, it is challenging to investigate the collision behavior of nanoliter droplets flying upward during the ADE. In particular, the dependence of the droplet’s collision behavior on substrate wettability and droplet velocity has yet to be thoroughly analyzed. In this paper, the kinetic processes of binary droplet collisions were investigated experimentally for different wettability substrate surfaces. Four states occur as the droplet collision velocity increases: coalescence after minor deformation, complete rebound, coalescence during rebound, and direct coalescence. For the hydrophilic substrate, there are wider ranges of Weber number (We) and Reynolds number (Re) in the complete rebound state. And with the decrease of the substrate wettability, the critical Weber and Reynolds numbers for the coalescence during rebound and the direct coalescence decrease. It is further revealed that the hydrophilic substrate is susceptible to droplet rebound because the sessile droplet has a larger radius of curvature and the viscous energy dissipation is greater. Besides, the prediction model of the maximum spreading diameter was established by modifying the droplet morphology in the complete rebound state. It is found that, under the same Weber and Reynolds numbers, droplet collisions on the hydrophilic substrate achieve a smaller maximum spreading coefficient and greater viscous energy dissipation, so the hydrophilic substrate is prone to droplet bounce

    Microzone Melting Method of Porous Reactor Fabrication with Structure-Controlled Microchannel Networks for High Yield In Situ DNA Synthesis

    No full text
    This paper presents a simple and cost-effective method for fabricating porous polydimethylsiloxane (PDMS) reactor array chip that is applied in de novo DNA synthesis. A microzone melting technique is proposed in the preparation of a porous PDMS reactor using the sugar particle as a sacrificial template. The curing temperature of 155 °C, higher than the melting point of the sugar particle, is chosen to enhance interconnectivity and reduce internal surface roughness of micropores inside the porous PDMS. The morphological observation and flow resistance test were performed on porous PDMS fabricated with various sugar particle sizes and weight ratios of PDMS to the sugar particle. The results indicate that region I (interconnected pore area) plays a pivotal role in the flow resistance of the porous PDMS reactor. The effectiveness of the porous PDMS reactor in DNA synthesis is verified by gel electrophoresis and fluorescence hybridization. Synthesis product analysis demonstrates that the yield of the porous PDMS reactor is in the same order of magnitude as that of a commercially available 200 nmol synthesis column. The proposed porous PDMS microreactor array chip exhibits great potential in the high-yield DNA synthesis

    Identification of Novel Umami Peptides in <i>Termitornyces albuminosus</i> (Berk) Heim Soup by In Silico Analyses Combined with Sensory Evaluation: Discovering Potential Mechanism of Umami Taste Formation with Molecular Perspective

    No full text
    In this study, 24 peptides were identified in Termitornyces albuminosus (Berk) Heim soup, 12 of which were predicted to possess an umami taste based on the BIOPEP-UWM or Umami-MRNN databases. Among these 12 peptides, four peptides (i.e., QNDF, QGGDF, EPVTLT, and EVNYDFGGK) exhibited the lowest affinity energy with the umami receptor type 1 member 1 (T1R1) subunit. Molecular docking and molecular dynamics simulation further confirmed the strong binding of these four umami peptides to the umami receptor T1R1/T1R3, with the EVNYDFGGK forming the most stable complex. After synthesizing the four peptides, their umami taste was validated through sensory and electronic tongue analyses with recognition thresholds ranging from 0.0938 to 0.3750 mmol/L. Notably, the EVNYDFGGK peptide displayed the strongest umami taste (recognition threshold, 0.0938 mmol/L). This study may contribute to the industrial development of T. albuminosus by providing a new understanding of the mechanism of its umami formation

    Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics

    No full text
    This paper proposes a novel strategy and an all-in-one toolbox that allows instrument-free customization of integrated microfluidic systems. Unlike the modular design of combining multiple microfluidic chips in the previous literature, this work, for the first time, proposes a “template sticker” method, in which sacrificial templates for microfluidic components are batch-produced in the form of standardized stickers and packaged into a toolbox. To create a customized monolithic microfluidic system, the end users only need to select and combine various template stickers following formulated steps. The fabricated microfluidic devices have well-defined microscale features, while the fabrication process is inexpensive and time-saving. Various functional microfluidic devices were fabricated and tested using this toolbox. The capability to create microchannels on curved surfaces is also demonstrated. As a proof of concept, we developed with the proposed toolbox a colorimetric testing platform for the detection of nitrite ions. The sticker toolbox, as the first self-contained portable platform for microfluidic fabrication, allows prompt customization of monolithic devices, enabling deployment of microfluidics with both ideal performance and customizability

    Thermal Transfer-Enabled Rapid Printing of Liquid Metal Circuits on Multiple Substrates

    No full text
    Low-cost, rapid patterning of liquid metal on various substrates is a key processing step for liquid metal-based soft electronics. Current patterning methods rely on expensive equipment and specific substrates, which severely limit their widespread applications. Based on surface adhesion adjustment of liquid metal through thermal transferring toner patterns, we present a universal printing technique of liquid metal circuits. Without using any expensive processing steps or equipment, the circuit patterns can be printed quickly on thermal transfer paper using a desktop laser printer, and a toner on the thermal transfer paper can be transferred to various smooth substrates and polymer-coated rough substrates. The technique has yielded liquid metal circuits with a minimum linewidth of 50 μm fabricated on various smooth, rough, and three-dimensional substrates with complex morphology. The liquid metal circuits can maintain their functions even under an extreme strain of 800%. Various circuits such as LED arrays, multiple sensors, a flexible display, a heating circuit, a radiofrequency identification circuit, and a 12-lead electrocardiogram circuit on various substrates have been demonstrated, indicating the great potential of such a technique to rapidly achieve large-area flexible circuits for wearable health monitoring, internet of things, and consumer electronics at low cost and high efficiency

    Thermal Transfer-Enabled Rapid Printing of Liquid Metal Circuits on Multiple Substrates

    No full text
    Low-cost, rapid patterning of liquid metal on various substrates is a key processing step for liquid metal-based soft electronics. Current patterning methods rely on expensive equipment and specific substrates, which severely limit their widespread applications. Based on surface adhesion adjustment of liquid metal through thermal transferring toner patterns, we present a universal printing technique of liquid metal circuits. Without using any expensive processing steps or equipment, the circuit patterns can be printed quickly on thermal transfer paper using a desktop laser printer, and a toner on the thermal transfer paper can be transferred to various smooth substrates and polymer-coated rough substrates. The technique has yielded liquid metal circuits with a minimum linewidth of 50 μm fabricated on various smooth, rough, and three-dimensional substrates with complex morphology. The liquid metal circuits can maintain their functions even under an extreme strain of 800%. Various circuits such as LED arrays, multiple sensors, a flexible display, a heating circuit, a radiofrequency identification circuit, and a 12-lead electrocardiogram circuit on various substrates have been demonstrated, indicating the great potential of such a technique to rapidly achieve large-area flexible circuits for wearable health monitoring, internet of things, and consumer electronics at low cost and high efficiency

    Image_1_PSTPIP2 Inhibits the Inflammatory Response and Proliferation of Fibroblast-Like Synoviocytes in vitro.TIF

    No full text
    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease and its pathogenesis remains unclear. Fibroblast-like synoviocytes (FLSs) play an important role in the pathogenesis of RA. Proline-serine-threonine phosphatase interacting protein 2 (PSTPIP2) is an adaptor protein, which is associated with auto-inflammatory disease. In this study, we selected adjuvant-induced arthritis (AIA) as animal model to study the role of PSTPIP2 in FLSs. We found that the expression of PSTPIP2 was significantly down-regulated in synovial tissues and FLSs of AIA rat compared with normal group. And overexpression of PSTPIP2 could inhibit the proliferation and inflammatory response of FLSs. Moreover, the proliferation and inflammatory response of FLSs were promoted with PSTPIP2 silencing treatment. In terms of mechanism, we found that the expression of PSTPIP2 was closely related to NF-κB signaling pathway. Overall, our results suggested that PSTPIP2 inhibits the proliferation and inflammatory response of FLSs, which might be closely related to NF-κB signaling pathway.</p

    Image_2_PSTPIP2 Inhibits the Inflammatory Response and Proliferation of Fibroblast-Like Synoviocytes in vitro.TIF

    No full text
    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease and its pathogenesis remains unclear. Fibroblast-like synoviocytes (FLSs) play an important role in the pathogenesis of RA. Proline-serine-threonine phosphatase interacting protein 2 (PSTPIP2) is an adaptor protein, which is associated with auto-inflammatory disease. In this study, we selected adjuvant-induced arthritis (AIA) as animal model to study the role of PSTPIP2 in FLSs. We found that the expression of PSTPIP2 was significantly down-regulated in synovial tissues and FLSs of AIA rat compared with normal group. And overexpression of PSTPIP2 could inhibit the proliferation and inflammatory response of FLSs. Moreover, the proliferation and inflammatory response of FLSs were promoted with PSTPIP2 silencing treatment. In terms of mechanism, we found that the expression of PSTPIP2 was closely related to NF-κB signaling pathway. Overall, our results suggested that PSTPIP2 inhibits the proliferation and inflammatory response of FLSs, which might be closely related to NF-κB signaling pathway.</p

    Thermal Transfer-Enabled Rapid Printing of Liquid Metal Circuits on Multiple Substrates

    No full text
    Low-cost, rapid patterning of liquid metal on various substrates is a key processing step for liquid metal-based soft electronics. Current patterning methods rely on expensive equipment and specific substrates, which severely limit their widespread applications. Based on surface adhesion adjustment of liquid metal through thermal transferring toner patterns, we present a universal printing technique of liquid metal circuits. Without using any expensive processing steps or equipment, the circuit patterns can be printed quickly on thermal transfer paper using a desktop laser printer, and a toner on the thermal transfer paper can be transferred to various smooth substrates and polymer-coated rough substrates. The technique has yielded liquid metal circuits with a minimum linewidth of 50 μm fabricated on various smooth, rough, and three-dimensional substrates with complex morphology. The liquid metal circuits can maintain their functions even under an extreme strain of 800%. Various circuits such as LED arrays, multiple sensors, a flexible display, a heating circuit, a radiofrequency identification circuit, and a 12-lead electrocardiogram circuit on various substrates have been demonstrated, indicating the great potential of such a technique to rapidly achieve large-area flexible circuits for wearable health monitoring, internet of things, and consumer electronics at low cost and high efficiency
    corecore