8 research outputs found

    A novel circular RNA circ_HN1/miR-628-5p/Ecto-5’-nucleotidase competing endogenous RNA network regulates gastric cancer development

    No full text
    The competing endogenous RNA (ceRNA) activity of circular RNAs (circRNAs) has been implicated in the development of gastric cancer. Here, we sought to explore the ceRNA function of circRNA Jupiter microtubule associated homolog 1 (circ_HN1) in gastric tumorigenesis. Circ_HN1, microRNA (miR)-628-5p, and NT5E expression levels were quantified by qRT-PCR and western blot. Dual-luciferase reporter assays were used to assess the direct relationship between miR-628-5p and circ_HN1 or NT5E. Our data showed that circ_HN1 expression was enhanced in human gastric cancer. Depletion of circ_HN1 impeded cell proliferation, spheroid formation, invasion, and migration and promoted apoptosis in vitro, as well as diminished tumor growth in vivo. NT5E was a downstream effector of circ_HN1 function. NT5E was targeted and inhibited by miR-628-5p through the perfect complementary site in NT5E 3ʹUTR, and circ_HN1 affected NT5E expression through miR-628-5p competition. Moreover, depletion of miR-628-5p reversed the effects of circ_HN1 silencing on regulating cell functional behaviors. Our findings identify a novel ceRNA network, the circ_HN1/miR-628-5p/NT5E axis, for the oncogenic activity of circ_HN1 in gastric cancer, highlighting circ_HN1 inhibition as a promising targeted treatment against gastric cancer.</p

    Substrate Stiffness Coupling TGF-β1 Modulates Migration and Traction Force of MDA-MB-231 Human Breast Cancer Cells in Vitro

    No full text
    Cancer cell migration is the hallmark of tumor metastasis; however, the mechanisms of cancer cell migration have not been fully understood. Considering the fact that biophysical and biochemical properties of the tumor microenvironment are altered during tumor progression, it is instinctive to think about whether the changed microenvironment can regulate cancer cell migration. Herein, we cultured human breast cancer cells (MDA-MB-231) on polyacrylamide gel substrates with different stiffnesses (1, 5, 10, and 20 kPa) with and without transforming growth factor-β1 (TGF-β1, 2 ng/mL) treatment to evaluate the effects of the altered tumor microenvironment on cancer cell migration in addition to the response of traction force generation and cytoskeleton remodeling. The results demonstrated that MDA-MB-231 migration increased with increasing substrate stiffness and was further enhanced with TGF-β1 addition. Traction forces and cytoskeleton remodeling were also found to be enhanced in response to TGF-β1 treatment. Furthermore, inhibiting myosin IIA-mediated contraction by blebbistatin decreased TGF-β1-enhanced traction force but increased TGF-β1-enhanced migration. These results imply that both biophysical (like stiffness) and biochemical (like TGF-β1) factors could orthogonally regulate cancer cell migration

    Antioxidant activity of arrowhead protein hydrolysates produced by a novel multi-frequency S-type ultrasound-assisted enzymolysis

    No full text
    Effects of multi-frequency S-type ultrasound (MFSU) assisted arrowhead protein (AP) hydrolysis on the antioxidant activity of its hydrolysates were studied. The results showed the DPPH• and ABTS•+ scavenging activity of hydrolysates obtained with dual frequency ultrasound (20/40 kHz) was 63.61% and 65.11%, respectively, and was higher than that noted for hydrolysates acquired with assistance of other mode (single and triple frequency ultrasound). Compared with hydrolysates without ultrasonic treatment, products of AP hydrolysis assisted by dual frequency ultrasound (20/40 kHz) could significantly alleviate oxidative stress induced by H2O2 in RAW 264.7 cells, mainly embodied in improving the survival rate and increasing the activity of antioxidant enzymes (CAT and SOD). Taken together, these results showed that MFSU-assisted enzymatic treatment can significantly improve the antioxidant activity of AP hydrolysates. Thus, the development of the novel MFSU could lay a foundation for assisting the protein enzymolysis in food and pharmaceutical industries.</p

    Extracellular Biocoordinated Zinc Nanofibers Inhibit Malignant Characteristics of Cancer Cell

    No full text
    Inhibition of the heat shock proteins (HSPs) has been considered to be one of the promising strategies for cancer treatment. However, developing highly effective HSP inhibitors remains a challenge. Recent studies on the evolutionarily distinct functions between intracellular and extracellular HSPs (eHSPs) trigger a new direction with eHSPs as chemotherapeutic targets. Herein, the first engineered eHSP nanoinhibitor with high effectiveness is reported. The zinc–aspartic acid nanofibers have specific binding ability to eHSP90, which induces a decrease in the level of the tumor marker-gelatinases, consequently resulting in downregulation of the tumor-promoting inflammation nuclear factor-kappa B signaling, and finally inhibiting cancer cell proliferation, migration, and invasion; while they are harmless to normal cells. Our findings highlight the potential for cancer treatment by altering the key determinants that shape its ability to adapt and evolve using novel nanomaterials

    Tough and Biocompatible Hydrogel Tissue Adhesives Entirely Based on Naturally Derived Ingredients

    No full text
    Hydrogel tissue adhesives have tremendous potential applications in biological engineering. Existing hydrogel tissue adhesives generally do not have adequate mechanical robustness and acceptable biocompatibility at the same time. Herein, we report a one-step method to synthesize tough and biocompatible hydrogel tissue adhesives entirely made of naturally derived ingredients. We select two natural polymers, chitosan and gelatin, to construct the backbone and a bioderived compound, genipin, as the cross-linker. We show that, upon gelation, genipins cross-link chitosan and gelatin to form two interpenetrated networks and interlink them to tissue surfaces. Meanwhile, hydrogen bonds form in the matrix to strengthen the networks and at the interface to strengthen the adhesion between the hydrogel and tissue. Furthermore, we elaborately use high initial polymer contents to induce topological entanglements in the polymer networks to toughen the hydrogel. The resulting chitosan–gelatin hydrogel provides a tough matrix, and the robust covalent interlinks and hydrogen bonds provide a strong interface, achieving a tensile strength of ∼190 kPa, a fracture toughness of 205.7 J/m2, a mode I adhesion energy of 197.6 J/m2, and a mode II adhesion energy of 51.2 J/m2. We demonstrate that the hydrogel tissue adhesive is injectable, degradable, and noncytotoxic and can be used for the controlled release of the anticancer drug cisplatin. All-natural ingredient-based tough and biocompatible hydrogels are promising as tissue adhesives for biomedical and related applications

    Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage

    No full text
    Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors

    Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage

    No full text
    Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors

    Detection of Frog Virus 3 by Integrating RPA-CRISPR/Cas12a-SPM with Deep Learning

    No full text
    A fast, easy-to-implement, highly sensitive, and point-of-care (POC) detection system for frog virus 3 (FV3) is proposed. Combining recombinase polymerase amplification (RPA) and CRISPR/Cas12a, a limit of detection (LoD) of 100 aM (60.2 copies/μL) is achieved by optimizing RPA primers and CRISPR RNAs (crRNAs). For POC detection, smartphone microscopy is implemented, and an LoD of 10 aM is achieved in 40 min. The proposed system detects four positive animal-derived samples with a quantitation cycle (Cq) value of quantitative PCR (qPCR) in the range of 13 to 32. In addition, deep learning models are deployed for binary classification (positive or negative samples) and multiclass classification (different concentrations of FV3 and negative samples), achieving 100 and 98.75% accuracy, respectively. Without temperature regulation and expensive equipment, the proposed RPA-CRISPR/Cas12a combined with smartphone readouts and artificial-intelligence-assisted classification showcases the great potential for FV3 detection, specifically POC detection of DNA virus
    corecore