10 research outputs found

    Risk factors for hepatocellular carcinoma in cirrhosis due to nonalcoholic fatty liver disease: A multicenter, case-control study

    Get PDF
    AIM To identify risk factors associated with hepatocellular carcinoma (HCC), describe tumor characteristics and treatments pursed for a cohort of individuals with nonalcoholic steatohepatitis (NASH) cirrhosis. METHODS We conducted a retrospective case-control study of a well-characterized cohort of patients among five liver transplant centers with NASH cirrhosis with (cases) and without HCC (controls). RESULTS Ninety-four cases and 150 controls were included. Cases were significantly more likely to be male than controls (67% vs 45%, P < 0.001) and of older age (61.9 years vs 58 years, P = 0.002). In addition, cases were more likely to have had complications of end stage liver disease (83% vs 71%, P = 0.032). On multivariate analysis, the strongest association with the presence of HCC were male gender (OR 4.3, 95%CI: 1.83-10.3, P = 0.001) and age (OR = 1.082, 95%CI: 1.03-1.13, P = 0.001). Hispanic ethnicity was associated with a decreased prevalence of HCC (OR = 0.3, 95%CI: 0.09-0.994, P = 0.048). HCC was predominantly in the form of a single lesion with regional lymph node(s) and distant metastasis in only 2.6% and 6.3%, respectively. Fifty-nine point three percent of individuals with HCC underwent locoregional therapy and 61.5% underwent liver transplantation for HCC. CONCLUSION Male gender, increased age and non-Hispanic ethnicity are associated with HCC in NASH cirrhosis. NASH cirrhosis associated HCC in this cohort was characterized by early stage disease at diagnosis and treatment with locoregional therapy and transplant

    PROX1 is a transcriptional regulator of MMP14

    Get PDF
    The transcription factor PROX1 is essential for development and cell fate specification. Its function in cancer is context-dependent since PROX1 has been shown to play both oncogenic and tumour suppressive roles. Here, we show that PROX1 suppresses the transcription of MMP14, a metalloprotease involved in angiogenesis and cancer invasion, by binding and suppressing the activity of MMP14 promoter. Prox1 deletion in murine dermal lymphatic vessels in vivo and in human LECs increased MMP14 expression. In a hepatocellular carcinoma cell line expressing high endogenous levels of PROX1, its silencing increased both MMP14 expression and MMP14-dependent invasion in 3D. Moreover, PROX1 ectopic expression reduced the MMP14-dependent 3D invasiveness of breast cancer cells and angiogenic sprouting of blood endothelial cells in conjunction with MMP14 suppression. Our study uncovers a new transcriptional regulatory mechanism of cancer cell invasion and endothelial cell specification.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Oncogenic herpesvirus engages the endothelial transcription factors SOX18 and PROX1 to increase viral genome copies and virus production

    Full text link
    ABSTRACTKaposi sarcoma (KS) is a tumour of endothelial origin caused by KS herpesvirus (KSHV) infection and suggested to originate from lymphatic endothelial cells (LECs). While KSHV establishes latency in virtually all susceptible cell types, LECs support a spontaneous lytic gene expression program with high viral genome copies and release of infectious virus. Here, we investigated the role of PROX1, SOX18 and COUPTF2, drivers of lymphatic endothelial fate during embryogenesis, in this unique KSHV infection program. We found that these factors were co-expressed in KS tumours with the viral lytic marker K8.1, and that SOX18 and PROX1 regulate KSHV infection via two independent mechanisms. SOX18 binds to the viral origins of replication and its depletion or chemical inhibition significantly reduced the KSHV genome copies in LECs. PROX1 interacts with ORF50, the initiator of the lytic cascade, increases lytic gene expression and virus production and its depletion reduces KSHV spontaneous lytic reactivation. Upon lytic replication, PROX1 binds to the KSHV genome in the promoter region of ORF50 and enhances its transactivation activity. These results demonstrate the importance of two endothelial transcription factors in the regulation of the KSHV life cycle and introduce SOX18 inhibition as a potential, novel therapeutic modality for KS.</jats:p

    Oncogenic herpesvirus engages endothelial transcription factors SOX18 and PROX1 to increase viral genome copies and virus production

    No full text
    Kaposi sarcoma is a tumor caused by Kaposi sarcoma herpesvirus (KSHV) infection and is thought to originate from lymphatic endothelial cells (LEC). While KSHV establishes latency in virtually all susceptible cell types, LECs support spontaneous expression of oncogenic lytic genes, high viral genome copies, and release of infectious virus. It remains unknown the contribution of spontaneous virus production to the expansion of KSHV-infected tumor cells and the cellular factors that render the lymphatic environment unique to KSHV life cycle. We show here that expansion of the infected cell population, observed in LECs, but not in blood endothelial cells, is dependent on the spontaneous virus production from infected LECs. The drivers of lymphatic endothelium development, SOX18 and PROX1, regulated different steps of the KSHV life cycle. SOX18 enhanced the number of intracellular viral genome copies and bound to the viral origins of replication. Genetic depletion or chemical inhibition of SOX18 caused a decrease of KSHV genome copy numbers. PROX1 interacted with ORF50, the viral initiator of lytic replication, and bound to the KSHV genome in the promoter region of ORF50, increasing its transactivation activity and KSHV spontaneous lytic gene expression and infectious virus release. In Kaposi sarcoma tumors, SOX18 and PROX1 expression correlated with latent and lytic KSHV protein expression. These results demonstrate the importance of two key transcriptional drivers of LEC fate in the regulation of the tumorigenic KSHV life cycle. Moreover, they introduce molecular targeting of SOX18 as a potential novel therapeutic avenue in Kaposi sarcoma.Significance: SOX18 and PROX1, central regulators of lymphatic development, are key factors for KSHV genome maintenance and lytic cycle in lymphatic endothelial cells, supporting Kaposi sarcoma tumorigenesis and representing attractive therapeutic targets

    Oncogenic Herpesvirus Engages Endothelial Transcription Factors SOX18 and PROX1 to Increase Viral Genome Copies and Virus Production

    Full text link
    Abstract Kaposi sarcoma is a tumor caused by Kaposi sarcoma herpesvirus (KSHV) infection and is thought to originate from lymphatic endothelial cells (LEC). While KSHV establishes latency in virtually all susceptible cell types, LECs support spontaneous expression of oncogenic lytic genes, high viral genome copies, and release of infectious virus. It remains unknown the contribution of spontaneous virus production to the expansion of KSHV-infected tumor cells and the cellular factors that render the lymphatic environment unique to KSHV life cycle. We show here that expansion of the infected cell population, observed in LECs, but not in blood endothelial cells, is dependent on the spontaneous virus production from infected LECs. The drivers of lymphatic endothelium development, SOX18 and PROX1, regulated different steps of the KSHV life cycle. SOX18 enhanced the number of intracellular viral genome copies and bound to the viral origins of replication. Genetic depletion or chemical inhibition of SOX18 caused a decrease of KSHV genome copy numbers. PROX1 interacted with ORF50, the viral initiator of lytic replication, and bound to the KSHV genome in the promoter region of ORF50, increasing its transactivation activity and KSHV spontaneous lytic gene expression and infectious virus release. In Kaposi sarcoma tumors, SOX18 and PROX1 expression correlated with latent and lytic KSHV protein expression. These results demonstrate the importance of two key transcriptional drivers of LEC fate in the regulation of the tumorigenic KSHV life cycle. Moreover, they introduce molecular targeting of SOX18 as a potential novel therapeutic avenue in Kaposi sarcoma. Significance: SOX18 and PROX1, central regulators of lymphatic development, are key factors for KSHV genome maintenance and lytic cycle in lymphatic endothelial cells, supporting Kaposi sarcoma tumorigenesis and representing attractive therapeutic targets. </jats:sec

    Serological signature of tick-borne pathogens in Scandinavian brown bears over two decades

    Get PDF
    BACKGROUND: Anthropogenic disturbances are changing the geographic distribution of ticks and tick-borne diseases. Over the last few decades, the tick Ixodes ricinus has expanded its range and abundance considerably in northern Europe. Concurrently, the incidence of tick-borne diseases, such as Lyme borreliosis and tick-borne encephalitis, has increased in the human populations of the Scandinavian countries. METHODS: Wildlife populations can serve as sentinels for changes in the distribution of tick-borne diseases. We used serum samples from a long-term study on the Scandinavian brown bear, Ursus arctos, and standard immunological methods to test whether exposure to Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, and tick-borne encephalitis virus (TBEV) had increased over time. Bears had been sampled over a period of 18 years (1995–2012) from a southern area, where Ixodes ricinus ticks are present, and a northern area where ticks are uncommon or absent. RESULTS: Bears had high levels of IgG antibodies against B. burgdorferi sensu lato but not TBEV. Bears at the southern area had higher values of anti-Borrelia IgG antibodies than bears at the northern area. Over the duration of the study, the value of anti-Borrelia IgG antibodies increased in the southern area but not the northern area. Anti-Borrelia IgG antibodies increased with the age of the bear but declined in the oldest age classes. CONCLUSIONS: Our study is consistent with the view that ticks and tick-borne pathogens are expanding their abundance and prevalence in Scandinavia. Long-term serological monitoring of large mammals can provide insight into how anthropogenic disturbances are changing the distribution of ticks and tick-borne diseases

    Generation and annotation of the DNA sequences of human chromosomes 2 and 4

    No full text

    Generation and annotation of the DNA sequences of human chromosomes 2 and 4

    No full text
    corecore