187 research outputs found
Identification of Magnetite in Lunar Regolith Breccia 60016: Evidence for Oxidized Conditions at the Lunar Surface
Lunar regolith breccias are temporal archives of magmatic and impact bombardment processes on the Moon. Apollo 16 sample 60016 is an ‘ancient’ feldspathic regolith breccia that was converted from a soil to a rock at ~3.8 Ga. The breccia contains a small (70 × 50 μm) rock fragment composed dominantly of an Fe-oxide phase with disseminated domains of troilite. Fragments of plagioclase (An95-97), pyroxene (En74-75, Fs21-22,Wo3-4) and olivine (Fo66-67) are distributed in and adjacent to the Fe-oxide. The silicate minerals have lunar compositions that are similar to anorthosites. Mineral chemistry, synchrotron X-ray Absorption Near Edge Spectroscopy (XANES) and X-ray Diffraction (XRD) studies demonstrate that the oxide phase is magnetite with an estimated Fe3+/ΣFe ratio of ~0.45. The presence of magnetite in 60016 indicates that oxygen fugacity during formation was equilibrated at, or above, the Fe-magnetite or wűstite-magnetite oxygen buffer. This discovery provides direct evidence for oxidised conditions on the Moon. Thermodynamic modelling shows that magnetite could have been formed from oxidisation-driven mineral replacement of Fe-metal or desulphurisation from Fe-sulphides (troilite) at low temperatures (°C) in equilibrium with H2O steam/liquid or CO2 gas. Oxidising conditions may have arisen from vapour transport during degassing of a magmatic source region, or from a hybrid endogenic-exogenic process when gases were released during an impacting asteroid or comet impact
Measurements of Shock Effects Recorded by Hayabusa Samples
We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD) [1,2]. As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith
Mineralogy of Pyroxene and Olivine in the Almahata Sitta Ureilite
The Almahata Sitta meteorite (hereafter "Alma") is the first example of a recovered asteroidal sample that fell to earth after detection still in the orbit (2008TC3 asteroid), and thus is critical to understand the relationship between meteorites and their asteroidal parent bodies [1]. Alma is a polymict ureilite showing a fine-grained brecciated texture with variable lithologies from black, porous to denser, white stones [1]. It is an anomalous ureilite because of wide compositional ranges of silicates with abundant pores often coated by vapor-deposit crystals [1]. Nevertheless, Alma has general similarities to all ureilites because of reduction textures of silicates suggestive of rapid cooling from high temperature as well as heterogeneous oxygen isotope compositions [e.g., 1-5]. Alma is especially unique because it spans the compositional range of known ureilites [1]. In this abstract we report detailed mineralogical and crystallographic investigations of two different fragments to further constrain its thermal history with regards to the nature of the ureilite parent body
New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review
Background/Objectives: Among various carbapenemases, New Delhi metallo-beta-lactamases (NDMs) are recognized as the most powerful type capable of hydrolyzing all beta-lactam antibiotics, often conferring multi-drug resistance to the microorganism. The objective of this review is to synthesize current scientific data on NDM inhibitors to facilitate the development of future therapeutics for challenging-to-treat pathogens. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews, we conducted a MEDLINE search for articles with relevant keywords from the beginning of 2009 to December 2022. We employed various generic terms to encompass all the literature ever published on potential NDM inhibitors. Results: Out of the 1760 articles identified through the database search, 91 met the eligibility criteria and were included in our analysis. The fractional inhibitory concentration index was assessed using the checkerboard assay for 47 compounds in 37 articles, which included 8 compounds already approved by the Food and Drug Administration (FDA) of the United States. Time-killing curve assays (14 studies, 25%), kinetic assays (15 studies, 40.5%), molecular investigations (25 studies, 67.6%), in vivo studies (14 studies, 37.8%), and toxicity assays (13 studies, 35.1%) were also conducted to strengthen the laboratory-level evidence of the potential inhibitors. None of them appeared to have been applied to human infections. Conclusions: Ongoing research efforts have identified several potential NDM inhibitors; however, there are currently no clinically applicable drugs. To address this, we must foster interdisciplinary and multifaceted collaborations by broadening our own horizons
Trends in incidence and mortality of tuberculosis in Japan : a population-based study, 1997–2016
Japan is still a medium-burden tuberculosis (TB) country. We aimed to examine trends in newly notified active TB incidence and TB-related mortality in the last two decades in Japan. This is a population-based study using Japanese Vital Statistics and Japan Tuberculosis Surveillance from 1997 to 2016. We determined active TB incidence and mortality rates (per 100 000 population) by sex, age and disease categories. Joinpoint regression was applied to calculate the annual percentage change (APC) in age-adjusted mortality rates and to identify the years showing significant trend changes. Crude and age-adjusted incidence rates reduced from 33.9 to 13.9 and 37.3 to 11.3 per 100 000 population, respectively. Also, crude and age-adjusted mortality rates reduced from 2.2 to 1.5 and 2.8 to 1.0 per 100 000 population, respectively. Average APC in the incidence and mortality rates showed significant decline both in men (−6.2% and −5.4%, respectively) and women (−5.7% and −4.6%, respectively). Age-specific analysis demonstrated decreases in incidence and mortality rates for every age category, except for the incidence trend in the younger population. Although trends in active TB incidence and mortality rates in Japan have favourably decreased, the rate of decline is far from achieving TB elimination by 2035
Olivine in Almahata Sitta - Curiouser and Curiouser
Almahata Sitta (hereafter Alma) is an anomalous, polymict ureilite. Anomalous features include low abundance of olivine, large compositional range of silicates, high abundance and large size of pores, crystalline pore wall linings, and overall finegrained texture. Tomography suggests the presence of foliation, which is known from other ureilites. Alma pyroxenes and their interpretation are discussed in two companion abstracts. In this abstract we discuss the composition of olivine in Alma, which is indicative of the complexity of this meteorite
Recommended from our members
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15-18 March 2016.
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
Early Solar System Cryovolcanics in the Laboratory
Two thermally-metamorphosed ordinary chondrite regolith breccias, Monahans 1998 (H5) and Zag (H3-6) contain fluid inclusion-bearing halite (NaCl) crystals, dated by K-Ar, Rb-Sr and I-Xe systematics to be approx. 4.5 billion years old. Heating/freezing studies of the aqueous fluid inclusions demonstrated that they were trapped near 25 C, and their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism
- …