155 research outputs found
Recommended from our members
The preparation and characterization of linear and cross-linked poly(fluorenyl)
Retrogressive reactions in coal processing are that class of reactions that lead to the formation of high molecular weight materials that are more intractable than those present in the coal prior to processing. This outcome almost always is regarded as deleterious. The present work focuses on the characterization of the acid-catalyzed polymerization of benzylic fluorides, and in particular the synthesis of poly(fluorenyl), as an example of the type of chemistry that may occur in the cross-linked organic matrix of coals when in contact with strong acids. Solution and solid state {sup 13}C NMR spectroscopy was used to characterize the soluble and insoluble polymers. The change in the value of the fraction of aromatic carbon that is protonated is the criterion used to monitor the extent of cross-linking in these polymer preparations. Benzylic fluorides are sensitive substances, prone to further reaction via acid catalyzed heterolytic scission of the C-F bond. The electron deficient reactive intermediate formed in this reaction undergoes electrophilic aromatic substitution. This reaction can be started with catalytic traces of acid and is self-sustaining as HF is generated in equivalent concentrations as the reaction proceeds. The relevance of this naturally non-occurring functional group in coal processing stems from the similar reaction pathway followed by both benzylic fluorides and benzylic alcohols. In the coal matrix, the operation of two exogenous processes--air oxidation and strong acid treatment of the coal (demineralization) creates a situation in which the polymerization discussed herein may occur in the coal. In addition to the polymerization reactions that produce poly(fluorenyl), the subsequent cross-linking of the linear polymer is also reported. In subsequent work, similar chemistry will be applied to soluble lignin as a model more similar to low rank coals
A multinuclear solid state NMR, density functional theory and X-Ray diffraction study of hydrogen bonding in Group I hydrogen dibenzoates
An NMR crystallographic approach incorporating multinuclear solid state NMR (SSNMR), X-ray structure determinations and density functional theory (DFT) are used to characterise the H bonding arrangements in benzoic acid (BZA) and the corresponding Group I alkali metal hydrogen dibenzoates (HD) systems. Since the XRD data often cannot precisely confirm the proton position within the hydrogen bond, the relationship between the experimental SSNMR parameters and the ability of gauge included plane augmented wave (GIPAW) DFT to predict them becomes a powerful constraint that can assist with further structure refinement. Both the 1H and 13C MAS NMR methods provide primary descriptions of the H bonding via accurate measurements of the 1H and 13C isotropic chemical shifts, and the individual 13C chemical shift tensor elements; these are unequivocally corroborated by DFT calculations, which together accurately describe the trend of the H bonding strength as the size of the monovalent cation changes. In addition, 17O MAS and DOR NMR form a powerful combination to characterise the O environments, with the DOR technique providing highly resolved 17O NMR data which helps verify unequivocally the number of inequivalent O positions for the conventional 17O MAS NMR to process. Further multinuclear MAS and static NMR studies involving the quadrupolar 7Li, 39K, 87Rb and 133Cs nuclei, and the associated DFT calculations, provide trends and a corroboration of the H bond geometry which assist in the understanding of these arrangements. Even though the crystallographic H positions in each H bonding arrangement reported from the single crystal X-ray studies are prone to uncertainty, the good corroboration between the measured and DFT calculated chemical shift and quadrupole tensor parameters for the Group I alkali species suggest that these reported H positions are reliable
The clinical effectiveness and cost-effectiveness of treatments for idiopathic pulmonary fibrosis: a systematic review and economic evaluation
BACKGROUND:
Idiopathic pulmonary fibrosis (IPF) is a life-limiting lung disease that generally affects people over 60 years old. The main symptoms are shortness of breath and cough, and as the disease progresses there is a considerable impact on day-to-day life. Few treatments are currently available.
OBJECTIVES:
To conduct a systematic review of clinical effectiveness and an analysis of cost-effectiveness of treatments for IPF based on an economic model informed by systematic reviews of cost-effectiveness and quality of life.
DATA SOURCES:
Eleven electronic bibliographic databases, including MEDLINE, EMBASE, Web of Science, and The Cochrane Library and the Centre for Reviews and Dissemination databases, were searched from database inception to July 2013. Reference lists of relevant publications were also checked and experts consulted.
METHODS:
Two reviewers independently screened references for the systematic reviews, extracted and checked data from the included studies and appraised their risk of bias. An advisory group was consulted about the choice of interventions until consensus was reached about eligibility. A narrative review with meta-analysis was undertaken, and a network meta-analysis (NMA) was performed. A decision-analytic Markov model was developed to estimate cost-effectiveness of pharmacological treatments for IPF. Parameter values were obtained from NMA and systematic reviews. Univariate and probabilistic sensitivity analyses were undertaken. The model perspective is NHS and Personal Social Services, and discount rate is 3.5% for costs and health benefits.
RESULTS:
Fourteen studies were included in the review of clinical effectiveness, of which one evaluated azathioprine, three N-acetylcysteine (NAC) (alone or in combination), four pirfenidone, one BIBF 1120, one sildenafil, one thalidomide, two pulmonary rehabilitation, and one a disease management programme. Study quality was generally good, with a low risk of bias. The current evidence suggests that some treatments appear to be clinically effective. The model base-case results show increased survival for five pharmacological treatments, compared with best supportive care, at increased cost. General recommendations cannot be made of their cost-effectiveness owing to limitations in the evidence base.
LIMITATIONS:
Few direct comparisons of treatments were identified. An indirect comparison through a NMA was performed; however, caution is recommended in the interpretation of these results. In relation to the economic model, there is an assumption that pharmacological treatments have a constant effect on the relative rate of per cent predicted forced vital capacity decline.
CONCLUSIONS:
Few interventions have any statistically significant effect on IPF and a lack of studies on palliative care approaches was identified. Research is required into the effects of symptom control interventions, in particular pulmonary rehabilitation and thalidomide. Other research priorities include a well-conducted randomised controlled trial on inhaled NAC therapy and an updated evidence synthesis once the results of ongoing studies are reported
Angiotensin-converting enzyme inhibitors of Bothrops jararaca snake venom affect the structure of mice seminiferous epithelium
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
International audienceMeasurements of electrons from νe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of missing energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
Measurements of electrons from interactions are crucial for the Deep
Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as
searches for physics beyond the standard model, supernova neutrino detection,
and solar neutrino measurements. This article describes the selection and
reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector.
ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and
operated at CERN as a charged particle test beam experiment. A sample of
low-energy electrons produced by the decay of cosmic muons is selected with a
purity of 95%. This sample is used to calibrate the low-energy electron energy
scale with two techniques. An electron energy calibration based on a cosmic ray
muon sample uses calibration constants derived from measured and simulated
cosmic ray muon events. Another calibration technique makes use of the
theoretically well-understood Michel electron energy spectrum to convert
reconstructed charge to electron energy. In addition, the effects of detector
response to low-energy electron energy scale and its resolution including
readout electronics threshold effects are quantified. Finally, the relation
between the theoretical and reconstructed low-energy electron energy spectrum
is derived and the energy resolution is characterized. The low-energy electron
selection presented here accounts for about 75% of the total electron deposited
energy. After the addition of lost energy using a Monte Carlo simulation, the
energy resolution improves from about 40% to 25% at 50~MeV. These results are
used to validate the expected capabilities of the DUNE far detector to
reconstruct low-energy electrons.Comment: 19 pages, 10 figure
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment
A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is
to measure the MeV neutrinos produced by a Galactic
core-collapse supernova if one should occur during the lifetime of the
experiment. The liquid-argon-based detectors planned for DUNE are expected to
be uniquely sensitive to the component of the supernova flux, enabling
a wide variety of physics and astrophysics measurements. A key requirement for
a correct interpretation of these measurements is a good understanding of the
energy-dependent total cross section for charged-current
absorption on argon. In the context of a simulated extraction of
supernova spectral parameters from a toy analysis, we investigate the
impact of modeling uncertainties on DUNE's supernova neutrino
physics sensitivity for the first time. We find that the currently large
theoretical uncertainties on must be substantially reduced
before the flux parameters can be extracted reliably: in the absence of
external constraints, a measurement of the integrated neutrino luminosity with
less than 10\% bias with DUNE requires to be known to about 5%.
The neutrino spectral shape parameters can be known to better than 10% for a
20% uncertainty on the cross-section scale, although they will be sensitive to
uncertainties on the shape of . A direct measurement of
low-energy -argon scattering would be invaluable for improving the
theoretical precision to the needed level.Comment: 25 pages, 21 figure
Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light
Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non- uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen
Supernova Pointing Capabilities of DUNE
The determination of the direction of a stellar core collapse via its
neutrino emission is crucial for the identification of the progenitor for a
multimessenger follow-up. A highly effective method of reconstructing supernova
directions within the Deep Underground Neutrino Experiment (DUNE) is
introduced. The supernova neutrino pointing resolution is studied by simulating
and reconstructing electron-neutrino charged-current absorption on Ar
and elastic scattering of neutrinos on electrons. Procedures to reconstruct
individual interactions, including a newly developed technique called ``brems
flipping'', as well as the burst direction from an ensemble of interactions are
described. Performance of the burst direction reconstruction is evaluated for
supernovae happening at a distance of 10 kpc for a specific supernova burst
flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage
for a perfect interaction-channel classification and a fiducial mass of 40
kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4%
rate of charged-current interactions being misidentified as elastic scattering,
DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at
68% coverage.Comment: 25 pages, 16 figure
- …