726 research outputs found
Partial-wave analysis of the eta pi+ pi- system produced in the reaction pi-p --> eta pi+ pi- n at 18 GeV/c
A partial-wave analysis of 9082 eta pi+ pi- n events produced in the reaction
pi- p --> eta pi+ pi- n at 18.3 GeV/c has been carried out using data from
experiment 852 at Brookhaven National Laboratory. The data are dominated by
J^{PC} = 0^{-+} partial waves consistent with observation of the eta(1295) and
the eta(1440). The mass and width of the eta(1295) were determined to be 1282
+- 5 MeV and 66 +- 13 Mev respectively while the eta(1440) was observed with a
mass of 1404 +- 6 MeV and width of 80 +- 21 MeV. Other partial waves of
importance include the 1++ and the 1+- waves. Results of the partial wave
analysis are combined with results of other experiments to estimate f1(1285)
branching fractions. These values are considerably different from current
values determined without the aid of amplitude analyses.Comment: 22 pages, 8 figure
Observation of exotic meson production in the reaction at 18 GeV/c
An amplitude analysis of an exclusive sample of 5765 events from the reaction
at 18 GeV/c is described. The
production is dominated by natural parity exchange and by
three partial waves: those with and . A
mass-dependent analysis of the partial-wave amplitudes indicates the production
of the meson as well as the meson, observed for the
first time decaying to . The dominant, exotic
(non- partial wave is shown to be resonant with a mass of
GeV/c^2 and a width of GeV/c^2 . This exotic state, the , is produced with a
dependence which is different from that of the meson, indicating
differences between the production mechanisms for the two states.Comment: 5 pages with 4 figure
A partial wave analysis of the system produced in charge exchange collisions
A partial wave analysis of the of the system produced in the
charge exchange reaction: at an incident momentum of
is presented as a function of invariant mass,
, and momentum transfer squared, , from the incident
to the outgoing system.Comment: 24 pages total,8 pages text, 14 figures, 1 table. Submitted to Phys
Rev
A leader i can(not) trust: Understanding the path from epistemic trust to political leader choices via dogmatism
There is growing concern about the impact of declining political trust on democracies. Psychological research has introduced the concept of epistemic (mis)trust as a stable disposition acquired through development, which may influence our sociopolitical engagement. Given trust's prominence in current politics, we examined the relationship between epistemic trust and people's choices of (un)trustworthy political leaders. In two representative samples in the UK and US (N = 1096), we tested whether epistemic trust predicts political leader choices through three political dimensions: dogmatism, political trust, and ideology. Although epistemic trust did not directly predict choices of political leaders, it predicted dogmatism and political ideology, which in turn predicted choices of political leaders. A network analysis revealed that epistemic trust and political dimensions only interact through their common connection with dogmatism. These findings suggest that cognitive and affective development may underlie an individual's political ideology and associated beliefs
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
Evidence for Exotic J^{PC}=1^{-+} Meson Production in the Reaction pi- p --> eta pi- p at 18 GeV/c
Details of the analysis of the eta pi- system studied in the reaction pi^{-}
p --> eta pi^{-} p at 18 GeV/c are given. Separate analyses for the 2 gamma and
pi+ pi- pi0 decay modes of the eta are presented. An amplitude analysis of the
data indicates the presence of interference between the a(2)(1320)- and a
J^{PC}=1^{-+} wave between 1.2 and 1.6 GeV/c^2. The phase difference between
these waves shows phase motion not attributable solely to the a(2)(1320)-. The
data can be fitted by interference between the a(2)(1320)- and an exotic 1^{-+}
resonance with M = 1370 +-16 +50 -30} MeV/c^2 and Gamma = 385 +- 40 +65 -105
MeV/c^2. Our results are compared with those of other experiments.Comment: 50 pages of text and 34 figure
Recommended from our members
The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector.
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies
Search for Exotic Mesons in pi- P Interactions at 18 GeV/c
The recent search for non mesons in interactions at
Brookhaven National Laboratory is summarized. Many final states such as , , , , , ,
which are favored decay modes of exotics, are under investigation.Comment: 9 pages, PostScript, Presented at the International School of Nuclear
Physics, Erice, Sicily, Italy, September 199
- …