51 research outputs found

    Log-based Evaluation of Label Splits for Process Models

    Get PDF
    Process mining techniques aim to extract insights in processes from event logs. One of the challenges in process mining is identifying interesting and meaningful event labels that contribute to a better understanding of the process. Our application area is mining data from smart homes for elderly, where the ultimate goal is to signal deviations from usual behavior and provide timely recommendations in order to extend the period of independent living. Extracting individual process models showing user behavior is an important instrument in achieving this goal. However, the interpretation of sensor data at an appropriate abstraction level is not straightforward. For example, a motion sensor in a bedroom can be triggered by tossing and turning in bed or by getting up. We try to derive the actual activity depending on the context (time, previous events, etc.). In this paper we introduce the notion of label refinements, which links more abstract event descriptions with their more refined counterparts. We present a statistical evaluation method to determine the usefulness of a label refinement for a given event log from a process perspective. Based on data from smart homes, we show how our statistical evaluation method for label refinements can be used in practice. Our method was able to select two label refinements out of a set of candidate label refinements that both had a positive effect on model precision.Comment: Paper accepted at the 20th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, to appear in Procedia Computer Scienc

    Heuristic Approaches for Generating Local Process Models through Log Projections

    Full text link
    Local Process Model (LPM) discovery is focused on the mining of a set of process models where each model describes the behavior represented in the event log only partially, i.e. subsets of possible events are taken into account to create so-called local process models. Often such smaller models provide valuable insights into the behavior of the process, especially when no adequate and comprehensible single overall process model exists that is able to describe the traces of the process from start to end. The practical application of LPM discovery is however hindered by computational issues in the case of logs with many activities (problems may already occur when there are more than 17 unique activities). In this paper, we explore three heuristics to discover subsets of activities that lead to useful log projections with the goal of speeding up LPM discovery considerably while still finding high-quality LPMs. We found that a Markov clustering approach to create projection sets results in the largest improvement of execution time, with discovered LPMs still being better than with the use of randomly generated activity sets of the same size. Another heuristic, based on log entropy, yields a more moderate speedup, but enables the discovery of higher quality LPMs. The third heuristic, based on the relative information gain, shows unstable performance: for some data sets the speedup and LPM quality are higher than with the log entropy based method, while for other data sets there is no speedup at all.Comment: paper accepted and to appear in the proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), special session on Process Mining, part of the Symposium Series on Computational Intelligence (SSCI

    System and method for cardiorespiratory sleep stage classification

    Get PDF
    The present disclosure pertains to a system configured to determine one or more parameters based on cardiorespiratory information from a subject and determine sleep stage classifications based on a discriminative undirected probabilistic graphical model such as Conditional Random Fields using the determined parameters. The system is advantageous because sleep is a structured process in which parameters determined for individual epochs are not independent over time and the system determines the sleep stage classifications based on parameters determined for a current epoch, determined relationships between parameters, sleep stage classifications determined for previous epochs, and/or other information. The system does not assume that determined parameters are discriminative during an entire sleep stage, but maybe indicative of a sleep stage transition alone. In some embodiments, the system comprises one or more sensors, one or more physical computer processors, electronic storage, and a user interface

    Protocol of the SOMNIA project : an observational study to create a neurophysiological database for advanced clinical sleep monitoring

    Get PDF
    Introduction Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods. Methods and analysis We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm
    corecore