202 research outputs found

    Control of VTOL Vehicles with Thrust-direction Tilting

    Full text link
    An approach to the control of a VTOL vehicle equipped with complementary thrust-direction tilting capabilities that nominally yield full actuation of the vehicle's position and attitude is developed. The particularity and difficulty of the control problem are epitomized by the existence of a maximal thrust-tilting angle which forbids complete and decoupled control of the vehicle's position and attitude in all situations. This problem is here addressed via the formalism of primary and secondary objectives and by extending a solution previously derived in the fixed thrust-direction case. The proposed control design is also illustrated by simulation results involving a quadrotor UAV with all propellers axes pointing in the same monitored tilted direction

    Exploiting polar symmetry in designing equivariant observers for vision-based motion estimation

    Full text link
    Accurately estimating camera motion from image sequences poses a significant challenge in computer vision and robotics. Many computer vision methods first compute the essential matrix associated with a motion and then extract orientation and normalized translation as inputs to pose estimation, reconstructing the scene scale (that is unobservable in the epipolar construction) from separate information. In this paper, we design a continuous-time filter that exploits the same perspective by using the epipolar constraint to define pseudo-measurements. We propose a novel polar symmetry on the pose of the camera that makes these measurements equivariant. This allows us to apply recent results from equivariant systems theory to estimating pose. We provide a novel explicit persistence of excitation condition to characterize observability of the full pose, ensuring reconstruction of the scale parameter that is not directly observable in the epipolar construction.Comment: Preprint for L-CS

    Nonlinear Feedback Control of Axisymmetric Aerial Vehicles

    Get PDF
    We investigate the use of simple aerodynamic models for the feedback control of aerial vehicles with large flight envelopes. Thrust-propelled vehicles with a body shape symmetric with respect to the thrust axis are considered. Upon a condition on the aerodynamic characteristics of the vehicle, we show that the equilibrium orientation can be explicitly determined as a function of the desired flight velocity. This allows for the adaptation of previously proposed control design approaches based on the thrust direction control paradigm. Simulation results conducted by using measured aerodynamic characteristics of quasi-axisymmetric bodies illustrate the soundness of the proposed approach

    Modeling for Control of Symmetric Aerial Vehicles Subjected to Aerodynamic Forces

    Full text link
    This paper participates in the development of a unified approach to the control of aerial vehicles with extended flight envelopes. More precisely, modeling for control purposes of a class of thrust-propelled aerial vehicles subjected to lift and drag aerodynamic forces is addressed assuming a rotational symmetry of the vehicle's shape about the thrust force axis. A condition upon aerodynamic characteristics that allows one to recast the control problem into the simpler case of a spherical vehicle is pointed out. Beside showing how to adapt nonlinear controllers developed for this latter case, the paper extends a previous work by the authors in two directions. First, the 3D case is addressed whereas only motions in a single vertical plane was considered. Secondly, the family of models of aerodynamic forces for which the aforementioned transformation holds is enlarged.Comment: 7 pages, 4 figure

    Output Regulation for Systems on Matrix Lie-group

    Full text link
    This paper deals with the problem of output regulation for systems defined on matrix Lie-Groups. Reference trajectories to be tracked are supposed to be generated by an exosystem, defined on the same Lie-Group of the controlled system, and only partial relative error measurements are supposed to be available. These measurements are assumed to be invariant and associated to a group action on a homogeneous space of the state space. In the spirit of the internal model principle the proposed control structure embeds a copy of the exosystem kinematic. This control problem is motivated by many real applications fields in aerospace, robotics, projective geometry, to name a few, in which systems are defined on matrix Lie-groups and references in the associated homogenous spaces

    Gradient-like observer design on the Special Euclidean group SE(3) with system outputs on the real projective space

    Full text link
    A nonlinear observer on the Special Euclidean group SE(3)\mathrm{SE(3)} for full pose estimation, that takes the system outputs on the real projective space directly as inputs, is proposed. The observer derivation is based on a recent advanced theory on nonlinear observer design. A key advantage with respect to existing pose observers on SE(3)\mathrm{SE(3)} is that we can now incorporate in a unique observer different types of measurements such as vectorial measurements of known inertial vectors and position measurements of known feature points. The proposed observer is extended allowing for the compensation of unknown constant bias present in the velocity measurements. Rigorous stability analyses are equally provided. Excellent performance of the proposed observers are shown by means of simulations

    An Equivariant Observer Design for Visual Localisation and Mapping

    Full text link
    This paper builds on recent work on Simultaneous Localisation and Mapping (SLAM) in the non-linear observer community, by framing the visual localisation and mapping problem as a continuous-time equivariant observer design problem on the symmetry group of a kinematic system. The state-space is a quotient of the robot pose expressed on SE(3) and multiple copies of real projective space, used to represent both points in space and bearings in a single unified framework. An observer with decoupled Riccati-gains for each landmark is derived and we show that its error system is almost globally asymptotically stable and exponentially stable in-the-large.Comment: 12 pages, 2 figures, published in 2019 IEEE CD

    Observer design for position and velocity bias estimation from a single direction output

    Get PDF
    This paper addresses the problem of estimating the position of an object moving in RnR^n from direction and velocity measurements. After addressing observability issues associated with this problem, a nonlinear observer is designed so as to encompass the case where the measured velocity is corrupted by a constant bias. Global exponential convergence of the estimation error is proved under a condition of persistent excitation upon the direction measurements. Simulation results illustrate the performance of the observer.Comment: 6 pages, 6 figure
    • …
    corecore