2,918 research outputs found

    Assessment and Spatiotemporal Variation Analysis of Water Quality in the Zhangweinan River Basin, China

    Get PDF
    AbstractSpatiotemporal variation analysis of water quality and identification of water pollution sources in river basins is very important for water resources protection and sustainable utilization. In this study, fuzzy comprehensive analysis and two statistical methods including cluster analysis and seasonal Kendall test method were used to evaluate the spatiotemporal variation of water quality in the Zhangweinan River basin. The results for spatial cluster analysis and assessment on water quality at 19 monitoring sites indicated that water quality in the Zhangweinan River basin could be classified into two regions according to pollution levels. One is the Zhang River basin located in northwest of the Zhangweinan River basin where water quality is good. Another one includes the Wei River and eastern plain of the Zhangweinan River basin, and the water pollution in this region is serious, where the pollutants from point sources flow into the river and the water quality changes greatly. The results of temporal cluster analysis and seasonal Kendall test indicated that the sampling periods may be classified into three periods during 2002-2009 according to water quality. Results of temporal cluster analysis and seasonal Kendall test indicated that the study periods may be classified into three periods and two different trends was detected during the period of 2002-2009. The first period was the year of 2002-2003, during which water quality had deteriorated and serious pollution was observed in the Wei River basin and eastern plain of the Zhangweinan River basin. The second period was the year of 2004-2006, during which water quality became better. The year of 2007-2009 is the third period, during which water quality had been improved greatly. Despite that water quality in the Zhangweinan River basin had been improved during the period of 2004-2009, water quality in the Wei River (southwestern part of the basin), the Wei Canal River and the Zhangweixin River (eastern plain of the basin) is still poor. These results provide may useful information for better pollution control strategies in the Zhangweinan River basin

    Non-Markovian dynamics for an open two-level system without rotating wave approximation: Indivisibility versus backflow of information

    Full text link
    By use of the two measures presented recently, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and the reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relations between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed

    Imaging Spectroscopy of a White-Light Solar Flare

    Get PDF
    We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric FeI line at 6173.34{\AA} and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning \pm172m{\AA} around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and \Upsilon-ray spectra (this was the first \Upsilon-ray flare of Cycle 24). The FeI line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.Comment: 14 pages, 7 figures, Accepted by Solar Physic

    A unique spinodal region in asymmetric nuclear matter

    Full text link
    Asymmetric nuclear matter at sub-saturation densities is shown to present only one type of instabilities. The associated order parameter is dominated by the isoscalar density and so the transition is of liquid-gas type. The instability goes in the direction of a restoration of the isospin symmetry leading to a fractionation phenomenon. These conclusions are model independent since they can be related to the general form of the asymmetry energy. They are illustrated using density functional approaches.Comment: 4 pages, 5 figures, to appear in Phys. Rev.

    Second Harmonic Generation for a Dilute Suspension of Coated Particles

    Full text link
    We derive an expression for the effective second-harmonic coefficient of a dilute suspension of coated spherical particles. It is assumed that the coating material, but not the core or the host, has a nonlinear susceptibility for second-harmonic generation (SHG). The resulting compact expression shows the various factors affecting the effective SHG coefficient. The effective SHG per unit volume of nonlinear coating material is found to be greatly enhanced at certain frequencies, corresponding to the surface plasmon resonance of the coated particles. Similar expression is also derived for a dilute suspension of coated discs. For coating materials with third-harmonic (THG) coefficient, results for the effective THG coefficients are given for the cases of coated particles and coated discs.Comment: 11 pages, 3 figures; accepted for publication in Phys. Rev.

    Model of multifragmentation, Equation of State and phase transition

    Full text link
    We consider a soluble model of multifragmentation which is similar in spirit to many models which have been used to fit intermediate energy heavy ion collision data. We draw a p-V diagram for the model and compare with a p-V diagram obtained from a mean-field theory. We investigate the question of chemical instability in the multifragmentation model. Phase transitions in the model are discussed.Comment: Revtex, 9 pages including 6 figures: some change in the text and Fig.

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel

    The Influence of Solar Flares on the Lower Solar Atmosphere: Evidence from the Na D Absorption Line Measured by GOLF/SOHO

    Full text link
    Solar flares presumably have an impact on the deepest layers of the solar atmosphere and yet the observational evidence for such an impact is scarce. Using ten years of measurements of the Na D1_{1} and Na D2_2 Fraunhofer lines, measured by GOLF onboard SOHO, we show that this photospheric line is indeed affected by flares. The effect of individual flares is hidden by solar oscillations, but a statistical analysis based on conditional averaging reveals a clear signature. Although GOLF can only probe one single wavelength at a time, we show that both wings of the Na line can nevertheless be compared. The varying line asymmetry can be interpreted as an upward plasma motion from the lower solar atmosphere during the peak of the flare, followed by a downward motion.Comment: 13 pages, 7 figure

    Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes

    Get PDF
    © 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe

    A statistical correlation of sunquakes based on their seismic and white-light emission

    Get PDF
    Several mechanisms have been proposed to explain the transient seismic emission, i.e. “sunquakes,” from some solar flares. Some theories associate high-energy electrons and/or white-light emission with sunquakes. High-energy charged particles and their subsequent heating of the photosphere and/or chromosphere could induce acoustic waves in the solar interior. We carried out a correlative study of solar flares with emission in hard X-rays, enhanced continuum emission at 6173 Å, and transient seismic emission. We selected those flares observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) with a considerable flux above 50 keV between 1 January 2010 and 26 June 2014. We then used data from the Helioseismic and Magnetic Imager onboard the Solar Dynamic Observatory to search for excess visible-continuum emission and new sunquakes not previously reported. We found a total of 18 sunquakes out of 75 flares investigated. All of the sunquakes were associated with an enhancement of the visible continuum during the flare. Finally, we calculated a coefficient of correlation for a set of dichotomic variables related to these observations. We found a strong correlation between two of the standard helioseismic detection techniques, and between sunquakes and visible-continuum enhancements. We discuss the phenomenological connectivity between these physical quantities and the observational difficulties of detecting seismic signals and excess continuum radiation
    corecore