106 research outputs found

    Energy expenditure of adult green turtles at their foraging grounds and during simulated oceanic migration

    No full text
    International audienceMeasuring the energy requirements of animals under natural conditions and determining how acquired energy is allocated to specific activities is a central theme in ecophysiology. Turtle reproductive output is fundamentally linked with their energy balance so a detailed understanding of marine turtle energy requirements during the different phases of their life cycle at sea is essential for their conservation. We used the non-invasive accelerometry technique to investigate the activity patterns and energy expenditure (EE) of adult green turtles (Chelonia mydas) foraging year-round at a seagrass meadow in Mayotte (n = 13) and during simulated oceanic migration (displacement from the nesting beach) off Moh茅li (n = 1), in the south-western Indian Ocean. At the foraging site, turtles divided their days between foraging benthically on the shallow seagrass meadow during daylight hours and resting at greater depth on the inner side of the reef slope at night. Estimated oxygen consumption rates (sinline image) and daily energy expenditures (DEE) at the foraging site were low (sinline image during the day was 1路6 and 1路9 times the respective resting rate at night during the austral summer and winter, respectively), which is consistent with the requirement to build up substantial energy reserves at the foraging site, to sustain the energy-demanding breeding migration and reproduction. Dive duration (but not dive depth) at the foraging site shifted significantly with season (dive duration increased with declining water temperatures, Tw), while overall activity levels remained unchanged. In parallel with a significant seasonal decline in Tw (from 28路9 卤 0路1 掳C to 25路3 卤 0路4 掳C), there was a moderate (藴19%) but significant decline in DEE of turtles during the austral winter (901 卤 111 kJ day鈭1), when compared with the austral summer (1117 卤 66 kJ day鈭1). By contrast, the turtle moved continuously during simulated oceanic migration, conducting short/shallow dives in the day, which (predominately at night) were interspersed with longer and deeper 鈥榩elagic鈥 dives. Estimated oxygen consumption rates during a simulated migration (1路25 卤 0路16 mL O2 min鈭1 kg鈭0路83) were found to be significantly increased over the foraging condition, equal to 藴3 times the resting rate at night (0路42 卤 0路02 mL O2 min鈭1 kg鈭0路83), and daily energy expenditure amounted to 2327 卤 292 kJ day鈭1, underlining the tremendous energetic effort associated with breeding migration. Our study indicates that the accelerometry technique provides a new and promising opportunity to study marine turtle energy relations in great detail and under natural conditions
    corecore