2,916 research outputs found

    In-situ growth of superconducting NdFeAs(O,F) thin films by Molecular Beam Epitaxy

    Full text link
    The recently discovered high temperature superconductor F-doped LaFeAsO and related compounds represent a new class of superconductors with the highest transition temperature (Tc) apart from the cuprates. The studies ongoing worldwide are revealing that these Fe-based superconductors are forming a unique class of materials that are interesting from the viewpoint of applications. To exploit the high potential of the Fe-based superconductors for device applications, it is indispensable to establish a process that enables the growth of high quality thin films. Efforts of thin film preparation started soon after the discovery of Fe-based superconductors, but none of the earlier attempts had succeeded in an in-situ growth of a superconducting film of LnFeAs(O,F) (Ln=lanthanide), which exhibits the highest Tc to date among the Fe-based superconductors. Here, we report on the successful growth of NdFeAs(O,F) thin films on GaAs substrates, which showed well-defined superconducting transitions up to 48 K without the need of an ex-situ heat treatment

    Electron Correlation Driven Heavy-Fermion Formation in LiV2O4

    Full text link
    Optical reflectivity measurements were performed on a single crystal of the d-electron heavy-fermion (HF) metal LiV2O4. The results evidence the highly incoherent character of the charge dynamics for all temperatures above T^* \approx 20 K. The spectral weight of the optical conductivity is redistributed over extremely broad energy scales (~ 5 eV) as the quantum coherence of the charge carriers is recovered. This wide redistribution is, in sharp contrast to f-electron Kondo lattice HF systems, characteristic of a metallic system close to a correlation driven insulating state. Our results thus reveal that strong electronic correlation effects dominate the low-energy charge dynamics and heavy quasiparticle formation in LiV2O4. We propose the geometrical frustration, which limits the extension of charge and spin ordering, as an additional key ingredient of the low-temperature heavy-fermion formation in this system.Comment: 5 pages, 3 figure

    Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy

    Get PDF
    Background-Although studies have suggested that "late-onset" hypertrophic cardiomyopathy (HCM) may be caused by sarcomeric protein gene mutations, the cause of HCM in the majority of patients is unknown. This study determined the prevalence of a potentially treatable cause of hypertrophy, Anderson-Fabry disease, in a HCM referral population.Methods and Results-Plasma alpha-galactosidase A (alpha-Gal) was measured in 79 men with HCM who were diagnosed at greater than or equal to40 years of age (52.9 +/- 7.7 years; range, 40-71 years) and in 74 men who were diagnosed at <40 years (25.9 +/- 9.2 years; range, 8-39 years). Five patients (6.3%) with late-onset disease and 1 patient (1.4%) diagnosed at <40 years had low alpha-Gal activity. Of these 6 patients, 3 had angina, 4 were in New York Heart Association class 2, 5 had palpitations, and 2 had a history of syncope. Hypertrophy was concentric in 5 patients and asymmetric in 1 patient. One patient had left ventricular outflow tract obstruction. All patients with low alpha-Gal activity had alpha-Gal gene mutations.Conclusion-Anderson-Fabry disease should be considered in all cases of unexplained hypertrophy. Its recognition is important given the advent of specific replacement enzyme therapy

    Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−x_{1-x}Nix_{x})O3−x_{3-x} solid solutions: The effects of cation arrangement on band gap

    Full text link
    We use a combination of conventional density functional theory (DFT) and post-DFT methods, including the local density approximation plus Hubbard UU (LDA+UU), PBE0, and self-consistent GWGW to study the electronic properties of Ni-substituted PbTiO3_{3} (Ni-PTO) solid solutions. We find that LDA calculations yield unreasonable band structures, especially for Ni-PTO solid solutions that contain an uninterrupted NiO2_{2} layer. Accurate treatment of localized states in transition-metal oxides like Ni-PTO requires post-DFT methods. BB-site Ni/Ti cation ordering is also investigated. The BB-site cation arrangement alters the bonding between Ni and O, and therefore strongly affects the band gap (EgE_{\rm g}) of Ni-PTO. We predict that Ni-PTO solid solutions should have a direct band gap in the visible light energy range, with polarization similar to the parent PbTiO3_{3}. This combination of properties make Ni-PTO solid solutions promising candidate materials for solar energy conversion devices.Comment: 19 pages, 6 figure

    Positron potential and wavefunction in LaFeAsO

    Full text link
    We report calculations of the positron potential and wavefunction in LaFeAsO. These calculations show that the positron wavefunction does sample the entire unit cell although it is largest in the interstices of the La layer adjacent to As atoms. The implication is that angular correlation of annihilation radiation (ACAR) is a viable probe of the Fermi surfaces in this material. The results also apply to positive muons, and indicate that these will be localized in the La layer adjacent to As

    Magnetoelectric control of topological phases in graphene

    Get PDF
    • …
    corecore