43,105 research outputs found

    Stress-energy Tensor Correlators in N-dim Hot Flat Spaces via the Generalized Zeta-Function Method

    Get PDF
    We calculate the expectation values of the stress-energy bitensor defined at two different spacetime points x,xx, x' of a massless, minimally coupled scalar field with respect to a quantum state at finite temperature TT in a flat NN-dimensional spacetime by means of the generalized zeta-function method. These correlators, also known as the noise kernels, give the fluctuations of energy and momentum density of a quantum field which are essential for the investigation of the physical effects of negative energy density in certain spacetimes or quantum states. They also act as the sources of the Einstein-Langevin equations in stochastic gravity which one can solve for the dynamics of metric fluctuations as in spacetime foams. In terms of constitutions these correlators are one rung above (in the sense of the correlation -- BBGKY or Schwinger-Dyson -- hierarchies) the mean (vacuum and thermal expectation) values of the stress-energy tensor which drive the semiclassical Einstein equation in semiclassical gravity. The low and the high temperature expansions of these correlators are also given here: At low temperatures, the leading order temperature dependence goes like TNT^{N} while at high temperatures they have a T2T^{2} dependence with the subleading terms exponentially suppressed by eTe^{-T}. We also discuss the singular behaviors of the correlators in the xxx'\rightarrow x coincident limit as was done before for massless conformal quantum fields.Comment: 23 pages, no figures. Invited contribution to a Special Issue of Journal of Physics A in honor of Prof. J. S. Dowke

    Monopoles and Knots in Skyrme Theory

    Get PDF
    We show that the Skyrme theory actually is a theory of monopoles which allows a new type of solitons, the topological knots made of monopole-anti-monopole pair,which is different from the well-known skyrmions. Furthermore, we derive a generalized Skyrme action from the Yang-Mills action of QCD, which we propose to be an effective action of QCD in the infra-red limit. We discuss the physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres

    Black hole quasinormal modes using the asymptotic iteration method

    Full text link
    In this article we show that the asymptotic iteration method (AIM) allows one to numerically find the quasinormal modes of Schwarzschild and Schwarzschild de Sitter (SdS) black holes. An added benefit of the method is that it can also be used to calculate the Schwarzschild anti-de Sitter (SAdS) quasinormal modes for the case of spin zero perturbations. We also discuss an improved version of the AIM, more suitable for numerical implementation.Comment: 10 pages, LaTeX; references added; substantially expanded versio

    Vacuum Structure of Two-Dimensional ϕ4\phi^4 Theory on the Orbifold S1/Z2S^{1}/Z_{2}

    Get PDF
    We consider the vacuum structure of two-dimensional ϕ4\phi^4 theory on S1/Z2S^{1}/Z_{2} both in the bosonic and the supersymmetric cases. When the size of the orbifold is varied, a phase transition occurs at Lc=2π/mL_{c}=2\pi/m, where mm is the mass of ϕ\phi. For L<LcL<L_{c}, there is a unique vacuum, while for L>LcL>L_{c}, there are two degenerate vacua. We also obtain the 1-loop quantum corrections around these vacuum solutions, exactly in the case of L<LcL<L_{c} and perturbatively for LL greater than but close to LcL_{c}. Including the fermions we find that the "chiral" zero modes around the fixed points are different for LLcLL_{c}. As for the quantum corrections, the fermionic contributions cancel the singular part of the bosonic contributions at L=0. Then the total quantum correction has a minimum at the critical length LcL_{c}.Comment: Revtex, 15 pages, 3 eps figure

    Graviton emission from simply rotating Kerr-de Sitter black holes: Transverse traceless tensor graviton modes

    Get PDF
    In this article we present results for tensor graviton modes (in seven dimensions and greater, n3n\geq 3) for greybody factors of Kerr-dS black holes and for Hawking radiation from simply rotating (n+4)-dimensional Kerr black holes. Although there is some subtlety with defining the Hawking temperature of a Kerr-dS black hole, we present some preliminary results for emissions assuming the standard Hawking normalization and a Bousso-Hawking-like normalization.Comment: 12 pages, 18 figure

    Angular Eigenvalues of Higher-Dimensional Kerr-(A)dS Black Holes with Two Rotations

    Full text link
    In this paper, following the work of Chen, L\"u and Pope, we present the general metric for Kerr-(A)dS black holes with two rotations. The corresponding Klein-Gordon equation is separated explicitly, from which we develop perturbative expansions for the angular eigenvalues in powers of the rotation parameters with D6D\geq 6.Comment: 10 pages, no figures. To appear in the proceedings of 2011 Shanghai Asia-Pacific School and Workshop on Gravitatio

    Bulk dominated fermion emission on a Schwarzschild background

    Get PDF
    Using the WKBJ approximation, and the Unruh method, we obtain semi-analytic expressions for the absorption probability (in all energy regimes) for Dirac fermions on a higher dimensional Schwarzschild background. We present an analytic expression relating the absorption probability to the absorption cross-section, and then use these results to plot the emission rates to third order in the WKBJ approximation. The set-up we use is sufficiently general such that it could also easily be applied to any spherically symmetric background in dd-dimensions. Our results lead to the interesting conclusion that for d>5d>5 bulk fermion emission dominates brane localised emission. This is an example contrary to the conjecture that black holes radiate mainly on the brane.Comment: 13 pages, 3 figure
    corecore