2,774 research outputs found

    Half-magnetization plateau stabilized by structural distortion in the antiferromagnetic Heisenberg model on a pyrochlore lattice

    Full text link
    Magnetization plateaus, visible as anomalies in magnetic susceptibility at low temperatures, are one of the hallmarks of frustrated magnetism. We show how an extremely robust half-magnetization plateau can arise from coupling between spin and lattice degrees of freedom in a pyrochlore antiferromagnet, and develop a detailed symmetry of analysis of the simplest possible scenario for such a plateau state. The application of this theory to the spinel oxides CdCr2O4 and HgCr2O4, where a robust half magnetization plateau has been observed, is discussed.Comment: 4 pages, 4 figure

    Magnetic Excitations in the Quasi-1D Ising-like Antiferromagnet TlCoCl3_3

    Full text link
    Neutron inelastic scattering measurements have been performed in order to investigate the magnetic excitations in the quasi-1D Ising-like antiferromagnet TlCoCl3_3. We observed the magnetic excitation, which corresponds to the spin-wave excitation continuum corresponding to the domain-wall pair excitation in the 1D Ising-like antiferromagnet. According to the Ishimura-Shiba theory, we analyzed the observed spin-wave excitation, and the exchange constant 2J2J and the anistropy ϵ\epsilon were estimated as 14.7 meV and 0.14 in TlCoCl3_3, respectively.Comment: 2 pages, 3 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn. Vol.75 (2006) No.

    Structural and dynamical heterogeneities in two-dimensional melting

    Full text link
    Using molecular dynamics simulation, we study structural and dynamical heterogeneities at melting in two-dimensional one-component systems with 36000 particles. Between crystal and liquid we find intermediate hexatic states, where the density fluctuations are enhanced at small wave number k as well as those of the six-fold orientational order parameter. Their structure factors both grow up to the smallest wave number equal to the inverse system length. The intermediate scattering function of the density S(k,t) is found to relax exponentially with decay rate Gamma_k ~ k^z with z~2.6 at small k in the hexatic phase.Comment: 6 pages, 8 figure

    Quantum Corrals, Eigenmodes and Quantum Mirages in s-wave Superconductors

    Full text link
    We study the electronic structure of magnetic and non-magnetic quantum corrals embedded in s-wave superconductors. We demonstrate that a quantum mirage of an impurity bound state peak can be projected from the occupied into the empty focus of a non-magnetic quantum corral via the excitation of the corral's eigenmodes. We observe an enhanced coupling between magnetic impurities inside the corral, which can be varied through oscillations in the corral's impurity potential. Finally, we discuss the form of eigenmodes in magnetic quantum corrals.Comment: 4 pages, 4 figure

    Susceptibility of the one-dimensional, dimerized Hubbard model

    Full text link
    We show that the zero temperature susceptibility of the one-dimensional, dimerized Hubbard model at quarter-filling can be accurately determined on the basis of exact diagonalization of small clusters. The best procedure is to perform a finite-size scaling of the spin velocity uσu_\sigma, and to calculate the susceptibility from the Luttinger liquid relation χ=2/πuσ\chi=2/\pi u_\sigma. We show that these results are reliable by comparing them with the analytical results that can be obtained in the weak and strong coupling limits. We have also used quantum Monte Carlo simulations to calculate the temperature dependence of the susceptibility for parameters that should be relevant to the Bechgaard salts. This shows that, used together, these numerical techniques are able to give precise estimates of the low temperature susceptibility of realistic one-dimensional models of correlated electrons.Comment: 10 pages, latex, figures available from the authors. To appear in Phys. Rev. B, Rapid Comm

    Binding of holons and spinons in the one-dimensional anisotropic t-J model

    Get PDF
    We study the binding of a holon and a spinon in the one-dimensional anisotropic t-J model using a Bethe-Salpeter equation approach, exact diagonalization, and density matrix renormalization group methods on chains of up to 128 sites. We find that holon-spinon binding changes dramatically as a function of anisotropy parameter \alpha=J_\perp/J_z: it evolves from an exactly deducible impurity-like result in the Ising limit to an exponentially shallow bound state near the isotropic case. A remarkable agreement between the theory and numerical results suggests that such a change is controlled by the corresponding evolution of the spinon energy spectrum.Comment: 4 pages, 5 figures, published versio

    Distribution of Microscopic Energy Flux in Equilibrium State

    Full text link
    The distribution function P(j) of the microscopic energy flux, j, in equilibrium state is studied. It is observed that P(j) has a broad peak in small j regime and a stretched-exponential decay for large j. The peak structure originates in a potential advection term and energy transfer term between the particles. The stretched exponential tail comes from the momentum energy advection term.Comment: 5 pages, 2 figure

    Effect of Inter-Site Repulsions on Magnetic Susceptibility of One-Dimensional Electron Systems at Quarter-Filling

    Full text link
    The temperature dependence of the magnetic susceptibility, \chi (T), is investigated for one-dimensional interacting electron systems at quarter-filling within the Kadanoff-Wilson renormalization-group method. The forward scattering on the same branch (the g_4-process) is examined together with the backward (g_1) and forward (g_2) scattering amplitudes on opposite branches. In connection with lattice models, we show that \chi (T) is strongly enhanced by the nearest-neighbor interaction, an enhancement that surpasses one of the next-nearest-neighbor interaction. A connection between our predictions for \chi (T) and experimental results for \chi (T) in quasi-one-dimensional organic conductors is presented.Comment: 4 pages, 4 figures, to be published in Journal of the Physical Society of Japan, vol. 74, No. 1

    Entanglement Entropy of Two Spheres

    Full text link
    We study the entanglement entropy S_{AB} of a massless free scalar field on two spheres A and B whose radii are R_1 and R_2, respectively, and the distance between the centers of them is r. The state of the massless free scalar field is the vacuum state. We obtain the result that the mutual information S_{A;B}:=S_A+S_B-S_{AB} is independent of the ultraviolet cutoff and proportional to the product of the areas of the two spheres when r>>R_1,R_2, where S_A and S_B are the entanglement entropy on the inside region of A and B, respectively. We discuss possible connections of this result with the physics of black holes.Comment: 17 pages, 9 figures; v4, added references, revised argument in section V, a typo in eq.(25) corrected, published versio
    • …
    corecore