2,705 research outputs found

    Cosmic-Ray Physics at the South Pole

    Full text link
    The geographic South Pole provides unique opportunities to study cosmic particles in the Southern Hemisphere. It represents an optimal location to deploy large-scale neutrino telescopes in the deep Antarctic ice, such as AMANDA or IceCube. In both cases, the presence of an array, constructed to observe extensive air showers, enables hybrid measurements of cosmic rays. While additional neutron monitors can provide information on solar cosmic rays, large detector arrays, like SPASE or IceTop, allow for precise measurements of cosmic rays with energies above several 100TeV100\,\rm{TeV}. In coincidence with the signals recorded in the deep ice, which are mostly due to the high-energy muons produced in air showers, this hybrid detector setup provides important information about the nature of cosmic rays. In this review, we will discuss the historical motivation and developments towards measurements of cosmic rays at the geographic South Pole and highlight recent results reported by the IceCube Collaboration. We will emphasize the important contributions by Thomas K. Gaisser and his colleagues that ultimately led to the rich Antarctic research program which today provides crucial insights into cosmic-ray physics.Comment: 21 pages, 21 figure

    The ARGUS Vertex Trigger

    Get PDF
    A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5\,mm radius.Comment: gzipped Postscript, 27 page

    Determination of the Michel Parameters rho, xi, and delta in tau-Lepton Decays with tau --> rho nu Tags

    Full text link
    Using the ARGUS detector at the e+ee^+ e^- storage ring DORIS II, we have measured the Michel parameters ρ\rho, ξ\xi, and ξδ\xi\delta for τ±l±ννˉ\tau^{\pm}\to l^{\pm} \nu\bar\nu decays in τ\tau-pair events produced at center of mass energies in the region of the Υ\Upsilon resonances. Using τρν\tau^\mp \to \rho^\mp \nu as spin analyzing tags, we find ρe=0.68±0.04±0.08\rho_{e}=0.68\pm 0.04 \pm 0.08, ξe=1.12±0.20±0.09\xi_{e}= 1.12 \pm 0.20 \pm 0.09, ξδe=0.57±0.14±0.07\xi\delta_{e}= 0.57 \pm 0.14 \pm 0.07, ρμ=0.69±0.06±0.08\rho_{\mu}= 0.69 \pm 0.06 \pm 0.08, ξμ=1.25±0.27±0.14\xi_{\mu}= 1.25 \pm 0.27 \pm 0.14 and ξδμ=0.72±0.18±0.10\xi\delta_{\mu}= 0.72 \pm 0.18 \pm 0.10. In addition, we report the combined ARGUS results on ρ\rho, ξ\xi, and ξδ\xi\delta using this work und previous measurements.Comment: 10 pages, well formatted postscript can be found at http://pktw06.phy.tu-dresden.de/iktp/pub/desy97-194.p

    The Outer Tracker Detector of the HERA-B Experiment Part I: Detector

    Full text link
    The HERA-B Outer Tracker is a large system of planar drift chambers with about 113000 read-out channels. Its inner part has been designed to be exposed to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions similar to those expected for future hadron collider experiments. 13 superlayers, each consisting of two individual chambers, have been assembled and installed in the experiment. The stereo layers inside each chamber are composed of honeycomb drift tube modules with 5 and 10 mm diameter cells. Chamber aging is prevented by coating the cathode foils with thin layers of copper and gold, together with a proper drift gas choice. Longitudinal wire segmentation is used to limit the occupancy in the most irradiated detector regions to about 20 %. The production of 978 modules was distributed among six different laboratories and took 15 months. For all materials in the fiducial region of the detector good compromises of stability versus thickness were found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all chambers. The successful operation of the HERA-B Outer Tracker shows that a large tracker can be efficiently built and safely operated under huge radiation load at a hadron collider.Comment: 28 pages, 14 figure

    Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B

    Full text link
    The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand radiation levels which are similar to LHC conditions. The first prototypes exposed to radiation in HERA-B suffered severe radiation damage due to the development of self-sustaining currents (Malter effect). In a subsequent extended R&D program major changes to the original concept for the drift tubes (surface conductivity, drift gas, production materials) have been developed and validated for use in harsh radiation environments. In the test program various aging effects (like Malter currents, gain loss due to anode aging and etching of the anode gold surface) have been observed and cures by tuning of operation parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001, Hamburg, German

    The Outer Tracker Detector of the HERA-B Experiment. Part II: Front-End Electronics

    Full text link
    The HERA-B Outer Tracker is a large detector with 112674 drift chamber channels. It is exposed to a particle flux of up to 2x10^5/cm^2/s thus coping with conditions similar to those expected for the LHC experiments. The front-end readout system, based on the ASD-8 chip and a customized TDC chip, is designed to fulfil the requirements on low noise, high sensitivity, rate tolerance, and high integration density. The TDC system is based on an ASIC which digitizes the time in bins of about 0.5 ns within a total of 256 bins. The chip also comprises a pipeline to store data from 128 events which is required for a deadtime-free trigger and data acquisition system. We report on the development, installation, and commissioning of the front-end electronics, including the grounding and noise suppression schemes, and discuss its performance in the HERA-B experiment

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions

    Full text link
    The HERA-B collaboration has studied the production of charmonium and open charm states in collisions of 920 GeV protons with wire targets of different materials. The acceptance of the HERA-B spectrometer covers negative values of xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8 GeV/c. The studies presented in this paper include J/psi differential distributions and the suppression of J/psi production in nuclear media. Furthermore, production cross sections and cross section ratios for open charm mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04), Chicago, IL, June 27 - July 3, 200

    The Crystal Ball Data Acquisition System

    Get PDF
    The data acquisition system for the Crystal Ball project at SLAC is described. A PDP-11/t55 using RSX-11M connected to the SLAC Triplex is the basis of the system. A "physics pipeline" allows physicists to write their own equipment-monitoring or physics tasks which require event sampling. As well, an interactive analysis package (MULTI) is in the pipeline. Histogram collection and display on the PDP are implemented using the Triplex histogramming package. Various interactive event displays are also implemented
    corecore