16,466 research outputs found
On the Thermodynamics of Granular Media
A thermodynamic formulation for moving granular material is proposed. The
fluctuations due to the constant flux and dissipation of energy are controlled
in a `granular' ensemble by a pressure (`compression') which is conjugate
to a contact volume (`contactopy'). The corresponding response function
(`dissipativity') describes how dissipation increases with and should
serve to identify the fluidization transition and 1/f noise. In the granular
ensemble one can consider the granular medium as a gas of elastically colliding
particles and define a ``granular'' temperature and other standard
thermodynamic quantities. PACS: 05.70, 46.10Comment: 11 p., no figs., plain Te
Sedimentation of Oblate Ellipsoids at low and Moderate Reynolds numbers
In many applications to biophysics and environmental engineering,
sedimentation of non-spherical particles for example: ellipsoids, is an
important problem. In our work, we simulate the dynamics of oblate ellipsoids
under gravity. We study the settling velocity and the average orientation of
the ellipsoids as a function of volume fraction. We see that the settling
velocity shows a local maximum at the intermmediate densities unlike the
spheres. The average orientation of the ellipsoids also shows a similar local
maximum and we observe that this local maximum disappears as the Reynolds
number is increased. Also, at small volume fractions, we observe that the
oblate ellipsoids exhibit an orientational clustering effect in alignment with
gravity accompanied by strong density fluctuations. The vertical and horizontal
fluctuations of the oblate ellipsoids are small compared to that of the
spheres
Calculation of the incremental stress-strain relation of a polygonal packing
The constitutive relation of the quasi-static deformation on two dimensional
packed samples of polygons is calculated using molecular dynamic simulations.
The stress values at which the system remains stable are bounded by a failure
surface, that shows a power law dependence on the pressure. Below the failure
surface, non linear elasticity and plastic deformation are obtained, which are
evaluated in the framework of the incremental linear theory. The results shows
that the stiffness tensor can be directly related to the micro-contact
rearrangements. The plasticity obeys a non-associated flow rule, with a plastic
limit surface that does not agree with the failure surface.Comment: 11 pages, 20 figur
On the Shape of the Tail of a Two Dimensional Sand Pile
We study the shape of the tail of a heap of granular material. A simple
theoretical argument shows that the tail adds a logarithmic correction to the
slope given by the angle of repose. This expression is in good agreement with
experiments. We present a cellular automaton that contains gravity, dissipation
and surface roughness and its simulation also gives the predicted shape.Comment: LaTeX file 4 pages, 4 PS figures, also available at
http://pmmh.espci.fr
- …