1,315 research outputs found

    Discretization of the velocity space in solution of the Boltzmann equation

    Full text link
    We point out an equivalence between the discrete velocity method of solving the Boltzmann equation, of which the lattice Boltzmann equation method is a special example, and the approximations to the Boltzmann equation by a Hermite polynomial expansion. Discretizing the Boltzmann equation with a BGK collision term at the velocities that correspond to the nodes of a Hermite quadrature is shown to be equivalent to truncating the Hermite expansion of the distribution function to the corresponding order. The truncated part of the distribution has no contribution to the moments of low orders and is negligible at small Mach numbers. Higher order approximations to the Boltzmann equation can be achieved by using more velocities in the quadrature

    Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation

    Get PDF
    We present a further theoretical extension to the kinetic theory based formulation of the lattice Boltzmann method of Shan et al (2006). In addition to the higher order projection of the equilibrium distribution function and a sufficiently accurate Gauss-Hermite quadrature in the original formulation, a new regularization procedure is introduced in this paper. This procedure ensures a consistent order of accuracy control over the non-equilibrium contributions in the Galerkin sense. Using this formulation, we construct a specific lattice Boltzmann model that accurately incorporates up to the third order hydrodynamic moments. Numerical evidences demonstrate that the extended model overcomes some major defects existed in the conventionally known lattice Boltzmann models, so that fluid flows at finite Knudsen number (Kn) can be more quantitatively simulated. Results from force-driven Poiseuille flow simulations predict the Knudsen's minimum and the asymptotic behavior of flow flux at large Kn

    Developing the Business Process Management Performance of an Information System Using the Delphi Study Technique

    Get PDF
    Information systems are used to manage an organisation’s business process management (BPM), its operations and performance. Thus, organisations will benefit from systematic processes for evaluating their business information systems with the aim of developing BPM and business information systems performance. The Delphi Study Technique (DST) is a structured business study technique that can be used as a systematic and interactive assessment process based on controlled feedback from business experts, professionals, or others with relevant experience. The Delphi study technique (also known as the Delphi method) has produced significant achievements in evaluating and improving BPM through identifying BPM values to be used as key indicators. This paper describes the essential stages for measuring the performance of an information system by combining the Delphi method and BPM values to improve an organisation’s business performance. The paper provides examples of the use of DST and discusses empirical results from the published literature

    Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method

    Full text link
    We derive a coarse-grained equation of motion of a number density by applying the projection operator method to a non-relativistic model. The derived equation is an integrodifferential equation and contains the memory effect. The equation is consistent with causality and the sum rule associated with the number conservation in the low momentum limit, in contrast to usual acausal diffusion equations given by using the Fick's law. After employing the Markov approximation, we find that the equation has the similar form to the causal diffusion equation. Our result suggests that current-current correlations are not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.

    Incorporating Forcing Terms in Cascaded Lattice-Boltzmann Approach by Method of Central Moments

    Full text link
    Cascaded lattice-Boltzmann method (Cascaded-LBM) employs a new class of collision operators aiming to improve numerical stability. It achieves this and distinguishes from other collision operators, such as in the standard single or multiple relaxation time approaches, by performing relaxation process due to collisions in terms of moments shifted by the local hydrodynamic fluid velocity, i.e. central moments, in an ascending order-by-order at different relaxation rates. In this paper, we propose and derive source terms in the Cascaded-LBM to represent the effect of external or internal forces on the dynamics of fluid motion. This is essentially achieved by matching the continuous form of the central moments of the source or forcing terms with its discrete version. Different forms of continuous central moments of sources, including one that is obtained from a local Maxwellian, are considered in this regard. As a result, the forcing terms obtained in this new formulation are Galilean invariant by construction. The method of central moments along with the associated orthogonal properties of the moment basis completely determines the expressions for the source terms as a function of the force and macroscopic velocity fields. In contrast to the existing forcing schemes, it is found that they involve higher order terms in velocity space. It is shown that the proposed approach implies "generalization" of both local equilibrium and source terms in the usual lattice frame of reference, which depend on the ratio of the relaxation times of moments of different orders. An analysis by means of the Chapman-Enskog multiscale expansion shows that the Cascaded-LBM with forcing terms is consistent with the Navier-Stokes equations. Computational experiments with canonical problems involving different types of forces demonstrate its accuracy.Comment: 55 pages, 4 figure

    Explicit coercivity estimates for the linearized Boltzmann and Landau operators

    Full text link
    We prove explicit coercivity estimates for the linearized Boltzmann and Landau operators, for a general class of interactions including any inverse-power law interactions, and hard spheres. The functional spaces of these coercivity estimates depend on the collision kernel of these operators. They cover the spectral gap estimates for the linearized Boltzmann operator with Maxwell molecules, improve these estimates for hard potentials, and are the first explicit coercivity estimates for soft potentials (including in particular the case of Coulombian interactions). We also prove a regularity property for the linearized Boltzmann operator with non locally integrable collision kernels, and we deduce from it a new proof of the compactness of its resolvent for hard potentials without angular cutoff.Comment: 32 page

    Blow-up of the hyperbolic Burgers equation

    Full text link
    The memory effects on microscopic kinetic systems have been sometimes modelled by means of the introduction of second order time derivatives in the macroscopic hydrodynamic equations. One prototypical example is the hyperbolic modification of the Burgers equation, that has been introduced to clarify the interplay of hyperbolicity and nonlinear hydrodynamic evolution. Previous studies suggested the finite time blow-up of this equation, and here we present a rigorous proof of this fact
    • ‚Ķ