485 research outputs found
Probing Vortex Unbinding via Dipole Fluctuations
We develop a numerical method for detecting a vortex unbinding transition in
a two-dimensional system by measuring large scale fluctuations in the total
vortex dipole moment of the system. These are characterized by a
quantity which measures the number of configurations in a simulation
for which the either or is half the system size. It is shown that
tends to a non-vanishing constant for large system sizes in the
unbound phase, and vanishes in the bound phase. The method is applied to the XY
model both in the absence and presence of a magnetic field. In the latter case,
the system size dependence of suggests that there exist three distinct
phases, one unbound vortex phase, a logarithmically bound phase, and a linearly
bound phase.Comment: 6 pages, 2 figure
Band topology and quantum spin Hall effect in bilayer graphene
We consider bilayer graphene in the presence of spin orbit coupling, to
assess its behavior as a topological insulator. The first Chern number for
the energy bands of single and bilayer graphene is computed and compared. It is
shown that for a given valley and spin, in a bilayer is doubled with
respect to the monolayer. This implies that bilayer graphene will have twice as
many edge states as single layer graphene, which we confirm with numerical
calculations and analytically in the case of an armchair terminated surface.
Bilayer graphene is a weak topological insulator, whose surface spectrum is
susceptible to gap opening under spin-mixing perturbations. We also assess the
stability of the associated topological bulk state of bilayer graphene under
various perturbations. Finally, we consider an intermediate situation in which
only one of the two layers has spin orbit coupling, and find that although
individual valleys have non-trivial Chern numbers, the spectrum as a whole is
not gapped, so that the system is not a topological insulator.Comment: 9 pages. 9 figures include
Collective charge density fluctuations in superconducting layered systems with bilayer unit cells
Collective modes of bilayered superconducting superlattices (e.g., YBCO) are
investigated within the conserving gauge-invariant ladder diagram approximation
including both the nearest interlayer single electron tunneling and the
Josephson-type Cooper pair tunneling. By calculating the density-density
response function including Coulomb and pairing interactions, we examine the
two collective mode branches corresponding to the in-phase and out-of-phase
charge fluctuations between the two layers in the unit cell. The out-of-phase
collective mode develops a long wavelength plasmon gap whose magnitude depends
on the tunneling strength with the mode dispersions being insensitive to the
specific tunneling mechanism (i.e., single electron or Josephson). We also show
that in the presence of tunneling the oscillator strength of the out-of-phase
mode overwhelms that of the in-phase-mode at and finite ,
where and are respectively the mode wave vectors perpendicular
and along the layer. We discuss the possible experimental observability of the
phase fluctuation modes in the context of our theoretical results for the mode
dispersion and spectral weight.Comment: 9 pages, 3 figure
Theory of Phonon Shakeup Effects on Photoluminescence from the Wigner Crystal in a Strong Magnetic Field
We develop a method to compute shakeup effects on photoluminescence from a
strong magnetic field induced two-dimensional Wigner crystal. Only localized
holes are considered. Our method treats the lattice electrons and the tunneling
electron on an equal footing, and uses a quantum-mechanical calculation of the
collective modes that does not depend in any way on a harmonic approximation.
We find that shakeup produces a series of sidebands that may be identified with
maxima in the collective mode density of states, and definitively distinguishes
the crystal state from a liquid state in the absence of electron-hole
interaction. In the presence of electron-hole interaction, sidebands also
appear in the liquid state coming from short-range density fluctuations around
the hole. However, the sidebands in the liquid state and the crystal state have
different qualitative behaviors. We also find a shift in the main luminescence
peak, that is associated with lattice relaxation in the vicinity of a vacancy.
The relationship of the shakeup spectrum with previous mean-field calculations
is discussed.Comment: 14 pages, uuencoded postscript file for entire paper, also available
at (click phd14) http://rainbow.uchicago.edu/~ldz/paper/paper.htm
Collective Modes of Quantum Hall Stripes
The collective modes of striped phases in a quantum Hall system are computed
using the time-dependent Hartree-Fock approximation. Uniform stripe phases are
shown to be unstable to the formation of modulations along the stripes, so that
within the Hartree-Fock approximation the groundstate is a stripe crystal. Such
crystalline states are generically gapped at any finite wavevector; however, in
the quantum Hall system the interactions of modulations among different stripes
is found to be remarkably weak, leading to an infinite collection of collective
modes with immeasurably small gaps. The resulting long wavelength behavior is
derivable from an elastic theory for smectic liquid crystals. Collective modes
for the phonon branch are computed throughout the Brillouin zone, as are spin
wave and magnetoplasmon modes. A soft mode in the phonon spectrum is identified
for partial filling factors sufficiently far from 1/2, indicating a second
order phase transition. The modes contain several other signatures that should
be experimentally observable.Comment: 36 pages LaTex with 11 postscript figures. Short animations of the
collective modes can be found at
http://www.physique.usherb.ca/~rcote/stripes/stripes.ht
Testing for Majorana Zero Modes in a Px+iPy Superconductor at High Temperature by Tunneling Spectroscopy
Directly observing a zero energy Majorana state in the vortex core of a
chiral superconductor by tunneling spectroscopy requires energy resolution
better than the spacing between core states . We show that
nevertheless, its existence can be decisively tested by comparing the
temperature broadened tunneling conductance of a vortex with that of an
antivortex even at temperatures .Comment: 5 pages, 4 figure
Signature of Quantum Hall Effect Skyrmions in Tunneling: A Theoretical Study
We present a theoretical study of the tunneling characteristic between
two parallel two-dimensional electron gases in a perpendicular magnetic field
when both are near filling factor . Finite-size calculations of the
single-layer spectral functions in the spherical geometry and analytical
expressions for the disk geometry in the thermodynamic limit show that the
current in the presence of skyrmions reflects in a direct way their underlying
structure. It is also shown that fingerprints of the electron-electron
interaction pseudopotentials are present in such a current.Comment: 4 pages, 1 figur
Skyrme Crystal In A Two-Dimensional Electron Gas
The ground state of a two-dimensional electron gas at Landau level filling
factors near is a Skyrme crystal with long range order in the
positions and orientations of the topologically and electrically charged
elementary excitations of the ferromagnetic ground state. The lowest
energy Skyrme crystal is a square lattice with opposing postures for
topological excitations on opposite sublattices. The filling factor dependence
of the electron spin-polarization, calculated for the square lattice Skyrme
crystal, is in excellent agreement with recent experiments.Comment: 3 pages, latex, 3 figures available upon request from
[email protected]
Shape Deformation driven Structural Transitions in Quantum Hall Skyrmions
The Quantum Hall ground state away from can be described by a
collection of interacting skyrmions. We show within the context of a nonlinear
sigma model, that the classical ground state away from is a skyrmion
crystal with a generalized N\'eel order. We show that as a function of filling
, the skyrmion crystal undergoes a triangle to square to triangle
transition at zero temperature. We argue that this structural transition,
driven by a change in the shape of the individual skyrmions, is stable to
thermal and quantum fluctuations and may be probed experimentally.Comment: 4 pages (REVTEX) and 4 .eps figure
Majorana fermions of a two-dimensional Px+iPy superconductor
To investigate Majorana fermionic excitations of a superconductor,
the Bogoliubov-de-Gennes equation is solved on a sphere for two cases: (i) a
vortex-antivortex pair at opposite poles and (ii) an edge near the south pole
and an antivortex at the north pole. The vortex cores support a state of two
Majorana fermions, the energy of which decreases exponentially with the radius
of the sphere, independently of a moderate disorder potential. The tunneling
conductance of an electron into the superconductor near the position of a
vortex is computed for finite temperature, and is compared to the case of an
{\it s}-wave superconductor. The zero bias conductance peak of the antivortex
is half that of the vortex. This effect can be used as a probe of the order
parameter symmetry, and as a direct measurement of the Majorana fermion.Comment: 15 pages, 17 figure
- …