194 research outputs found
Micro-fabricated electromagnetic filters for millikelvin experiments
In this article we report on the design, fabrication and tests of
micro-fabricated broadband filters suitable for proper electromagnetic
thermalization of electrical lines connected to sensitive quantum electronics
experiments performed at dilution fridge temperatures. Compared to previous
such miniature filters, the new design improves on performance and reliability.
These filters can be packed in space-saving cases with either single or
multi-contact connectors. Measured performance in the accessible range compares
well to simulations. We use these simulations to discuss the effectiveness of
these filters for electromagnetic thermalization at 30 mK.Comment: Available at http://www-spht.cea.fr/articles/s06/03
Phase controlled superconducting proximity effect probed by tunneling spectroscopy
Using a dual-mode STM-AFM microscope operating below 50mK we measured the
Local Density of States (LDoS) along small normal wires connected at both ends
to superconductors with different phases. We observe that a uniform minigap can
develop in the whole normal wire and in the superconductors near the
interfaces. The minigap depends periodically on the phase difference. The
quasiclassical theory of superconductivity applied to a simplified 1D model
geometry accounts well for the data.Comment: Accepted for publication in Physical Review Letter
Tuning Energy Relaxation along Quantum Hall Channels
The chiral edge channels in the quantum Hall regime are considered ideal
ballistic quantum channels, and have quantum information processing
potentialities. Here, we demonstrate experimentally, at filling factor 2, the
efficient tuning of the energy relaxation that limits quantum coherence and
permits the return toward equilibrium. Energy relaxation along an edge channel
is controllably enhanced by increasing its transmission toward a floating ohmic
contact, in quantitative agreement with predictions. Moreover, by forming a
closed inner edge channel loop, we freeze energy exchanges in the outer
channel. This result also elucidates the inelastic mechanisms at work at
filling factor 2, informing us in particular that those within the outer edge
channel are negligible.Comment: 8 pages including supplementary materia
Room-temperature tunnel current amplifier and experimental setup for high resolution electronic spectroscopy in millikelvin STM experiments
The spectroscopic resolution of tunneling measurements performed with a
scanning tunneling microscope is ultimately limited by the temperature at which
the experiment is performed. To take advantage of the potential high
spectroscopic resolution associated with operating an STM in a dilution
refrigerator we have designed a room temperature tunnel current amplifier
having very small back-action on the tunnel contact and allowing to nearly
reach the predicted energy resolution. This design is a modification of the
standard op-amp based tip-biasing current-voltage converter which implements
differential voltage sensing and whose back action on the tip voltage is only
~2 V rms for a 14 MV/A transimpedance and 22 kHz bandwidth.Comment: Available at http://www-spht.cea.fr/articles/s06/03
Energy Relaxation in the Integer Quantum Hall Regime
We investigate the energy exchanges along an electronic quantum channel
realized in the integer quantum Hall regime at filling factor . One of
the two edge channels is driven out-of-equilibrium and the resulting electronic
energy distribution is measured in the outer channel, after several propagation
lengths mm. Whereas there are no discernable energy
transfers toward thermalized states, we find efficient energy redistribution
between the two channels without particle exchanges. At long distances
m, the measured energy distribution is a hot Fermi function whose
temperature is lower than expected for two interacting channels, which suggests
the contribution of extra degrees of freedom. The observed short energy
relaxation length challenges the usual description of quantum Hall excitations
as quasiparticles localized in one edge channel.Comment: To be published in PRL, 10 pages including supplementary materia
Strong back-action of a linear circuit on a single electronic quantum channel
What are the quantum laws of electricity in mesoscopic circuits? This very
fundamental question has also direct implications for the quantum engineering
of nanoelectronic devices. Indeed, when a quantum coherent conductor is
inserted into a circuit, its transport properties are modified. In particular,
its conductance is reduced because of the circuit back-action. This phenomenon,
called environmental Coulomb blockade, results from the granularity of charge
transfers across the coherent conductor. Although extensively studied for a
tunnel junction in a linear circuit, it is only fully understood for arbitrary
short coherent conductors in the limit of small circuit impedances and small
conductance reduction. Here, we investigate experimentally the strong
back-action regime, with a conductance reduction of up to 90%. This is achieved
by embedding a single quantum channel of tunable transmission in an adjustable
on-chip circuit of impedance comparable to the resistance quantum
at microwave frequencies. The experiment reveals important deviations from
calculations performed in the weak back-action framework, and matches with
recent theoretical results. From these measurements, we propose a generalized
expression for the conductance of an arbitrary quantum channel embedded in a
linear circuit.Comment: 11 pages including supplementary information, to be published in
Nature Physic
Quantum coherence engineering in the integer quantum Hall regime
We present an experiment where the quantum coherence in the edge states of
the integer quantum Hall regime is tuned with a decoupling gate. The coherence
length is determined by measuring the visibility of quantum interferences in a
Mach-Zehnder interferometer as a function of temperature, in the quantum Hall
regime at filling factor two. The temperature dependence of the coherence
length can be varied by a factor of two. The strengthening of the phase
coherence at finite temperature is shown to arise from a reduction of the
coupling between co-propagating edge states. This opens the way for a strong
improvement of the phase coherence of Quantum Hall systems. The decoupling gate
also allows us to investigate how inter-edge state coupling influence the
quantum interferences' dependence on the injection bias. We find that the
finite bias visibility can be decomposed into two contributions: a Gaussian
envelop which is surprisingly insensitive to the coupling, and a beating
component which, on the contrary, is strongly affected by the coupling.Comment: 4 pages, 5 figure
Antibunched photons emitted by a dc-biased Josephson junction
We show experimentally that a dc biased Josephson junction in series with a high-enough-impedance microwave resonator emits antibunched photons. Our resonator is made of a simple microfabricated spiral coil that resonates at 4.4 GHz and reaches a 1.97kΩ characteristic impedance. The second order correlation function of the power leaking out of the resonator drops down to 0.3 at zero delay, which demonstrates the antibunching of the photons emitted by the circuit at a rate of 6×10^7 photons per second. Results are found in quantitative agreement with our theoretical predictions. This simple scheme could offer an efficient and bright single-photon source in the microwave domain
Scheduling Task-parallel Applications in Dynamically Asymmetric Environments
Shared resource interference is observed by applications as dynamic
performance asymmetry. Prior art has developed approaches to reduce the impact
of performance asymmetry mainly at the operating system and architectural
levels. In this work, we study how application-level scheduling techniques can
leverage moldability (i.e. flexibility to work as either single-threaded or
multithreaded task) and explicit knowledge on task criticality to handle
scenarios in which system performance is not only unknown but also changing
over time. Our proposed task scheduler dynamically learns the performance
characteristics of the underlying platform and uses this knowledge to devise
better schedules aware of dynamic performance asymmetry, hence reducing the
impact of interference. Our evaluation shows that both criticality-aware
scheduling and parallelism tuning are effective schemes to address interference
in both shared and distributed memory applicationsComment: Published in ICPP Workshops '2
Lumped element kinetic inductance detectors maturity for space-borne instruments in the range between 80 and 180 GHz
This work intends to give the state-of-the-art of our knowledge of the
performance of LEKIDs at millimetre wavelengths (from 80 to 180~GHz). We
evaluate their optical sensitivity under typical background conditions and
their interaction with ionising particles. Two LEKID arrays, originally
designed for ground-based applications and composed of a few hundred pixels
each, operate at a central frequency of 100, and 150~GHz (
about 0.3). Their sensitivities have been characterised in the laboratory using
a dedicated closed-circle 100~mK dilution cryostat and a sky simulator,
allowing for the reproduction of realistic, space-like observation conditions.
The impact of cosmic rays has been evaluated by exposing the LEKID arrays to
alpha particles (Am) and X sources (Cd) with a readout sampling
frequency similar to the ones used for Planck HFI (about 200~Hz), and also with
a high resolution sampling level (up to 2~MHz) in order to better characterise
and interpret the observed glitches. In parallel, we have developed an
analytical model to rescale the results to what would be observed by such a
LEKID array at the second Lagrangian point.Comment: 7 pages, 2 tables, 13 figure
- …