1,103 research outputs found
Clear and Compress: Computing Persistent Homology in Chunks
We present a parallelizable algorithm for computing the persistent homology
of a filtered chain complex. Our approach differs from the commonly used
reduction algorithm by first computing persistence pairs within local chunks,
then simplifying the unpaired columns, and finally applying standard reduction
on the simplified matrix. The approach generalizes a technique by G\"unther et
al., which uses discrete Morse Theory to compute persistence; we derive the
same worst-case complexity bound in a more general context. The algorithm
employs several practical optimization techniques which are of independent
interest. Our sequential implementation of the algorithm is competitive with
state-of-the-art methods, and we improve the performance through parallelized
computation.Comment: This result was presented at TopoInVis 2013
(http://www.sci.utah.edu/topoinvis13.html
Finding Pairwise Intersections Inside a Query Range
We study the following problem: preprocess a set O of objects into a data
structure that allows us to efficiently report all pairs of objects from O that
intersect inside an axis-aligned query range Q. We present data structures of
size and with query time
time, where k is the number of reported pairs, for two classes of objects in
the plane: axis-aligned rectangles and objects with small union complexity. For
the 3-dimensional case where the objects and the query range are axis-aligned
boxes in R^3, we present a data structures of size and query time . When the objects and
query are fat, we obtain query time using storage
Semi-dynamic connectivity in the plane
Motivated by a path planning problem we consider the following procedure.
Assume that we have two points and in the plane and take
. At each step we add to a compact convex
set that does not contain nor . The procedure terminates when the sets
in separate and . We show how to add one set to
in amortized time plus the time needed to find
all sets of intersecting the newly added set, where is the
cardinality of , is the number of sets in
intersecting the newly added set, and is the inverse of the
Ackermann function
Mind the Gap: A Study in Global Development through Persistent Homology
The Gapminder project set out to use statistics to dispel simplistic notions
about global development. In the same spirit, we use persistent homology, a
technique from computational algebraic topology, to explore the relationship
between country development and geography. For each country, four indicators,
gross domestic product per capita; average life expectancy; infant mortality;
and gross national income per capita, were used to quantify the development.
Two analyses were performed. The first considers clusters of the countries
based on these indicators, and the second uncovers cycles in the data when
combined with geographic border structure. Our analysis is a multi-scale
approach that reveals similarities and connections among countries at a variety
of levels. We discover localized development patterns that are invisible in
standard statistical methods
Topological characteristics of oil and gas reservoirs and their applications
We demonstrate applications of topological characteristics of oil and gas
reservoirs considered as three-dimensional bodies to geological modeling.Comment: 12 page
Categorification of persistent homology
We redevelop persistent homology (topological persistence) from a categorical
point of view. The main objects of study are diagrams, indexed by the poset of
real numbers, in some target category. The set of such diagrams has an
interleaving distance, which we show generalizes the previously-studied
bottleneck distance. To illustrate the utility of this approach, we greatly
generalize previous stability results for persistence, extended persistence,
and kernel, image and cokernel persistence. We give a natural construction of a
category of interleavings of these diagrams, and show that if the target
category is abelian, so is this category of interleavings.Comment: 27 pages, v3: minor changes, to appear in Discrete & Computational
Geometr
A Bichromatic Incidence Bound and an Application
We prove a new, tight upper bound on the number of incidences between points
and hyperplanes in Euclidean d-space. Given n points, of which k are colored
red, there are O_d(m^{2/3}k^{2/3}n^{(d-2)/3} + kn^{d-2} + m) incidences between
the k red points and m hyperplanes spanned by all n points provided that m =
\Omega(n^{d-2}). For the monochromatic case k = n, this was proved by Agarwal
and Aronov.
We use this incidence bound to prove that a set of n points, no more than n-k
of which lie on any plane or two lines, spans \Omega(nk^2) planes. We also
provide an infinite family of counterexamples to a conjecture of Purdy's on the
number of hyperplanes spanned by a set of points in dimensions higher than 3,
and present new conjectures not subject to the counterexample.Comment: 12 page
Sparse Nerves in Practice
Topological data analysis combines machine learning with methods from
algebraic topology. Persistent homology, a method to characterize topological
features occurring in data at multiple scales is of particular interest. A
major obstacle to the wide-spread use of persistent homology is its
computational complexity. In order to be able to calculate persistent homology
of large datasets, a number of approximations can be applied in order to reduce
its complexity. We propose algorithms for calculation of approximate sparse
nerves for classes of Dowker dissimilarities including all finite Dowker
dissimilarities and Dowker dissimilarities whose homology is Cech persistent
homology. All other sparsification methods and software packages that we are
aware of calculate persistent homology with either an additive or a
multiplicative interleaving. In dowker_homology, we allow for any
non-decreasing interleaving function . We analyze the computational
complexity of the algorithms and present some benchmarks. For Euclidean data in
dimensions larger than three, the sizes of simplicial complexes we create are
in general smaller than the ones created by SimBa. Especially when calculating
persistent homology in higher homology dimensions, the differences can become
substantial
On the maximum size of an anti-chain of linearly separable sets and convex pseudo-discs
We show that the maximum cardinality of an anti-chain composed of
intersections of a given set of n points in the plane with half-planes is close
to quadratic in n. We approach this problem by establishing the equivalence
with the problem of the maximum monotone path in an arrangement of n lines. For
a related problem on antichains in families of convex pseudo-discs we can
establish the precise asymptotic bound: it is quadratic in n. The sets in such
a family are characterized as intersections of a given set of n points with
convex sets, such that the difference between the convex hulls of any two sets
is nonempty and connected.Comment: 10 pages, 3 figures. revised version correctly attributes the idea of
Section 3 to Tverberg; and replaced k-sets by "linearly separable sets" in
the paper and the title. Accepted for publication in Israel Journal of
Mathematic
Computational Topology Techniques for Characterizing Time-Series Data
Topological data analysis (TDA), while abstract, allows a characterization of
time-series data obtained from nonlinear and complex dynamical systems. Though
it is surprising that such an abstract measure of structure - counting pieces
and holes - could be useful for real-world data, TDA lets us compare different
systems, and even do membership testing or change-point detection. However, TDA
is computationally expensive and involves a number of free parameters. This
complexity can be obviated by coarse-graining, using a construct called the
witness complex. The parametric dependence gives rise to the concept of
persistent homology: how shape changes with scale. Its results allow us to
distinguish time-series data from different systems - e.g., the same note
played on different musical instruments.Comment: 12 pages, 6 Figures, 1 Table, The Sixteenth International Symposium
on Intelligent Data Analysis (IDA 2017
- …