6,297 research outputs found
Geant4 Simulation of a filtered X-ray Source for Radiation Damage Studies
Geant4 low energy extensions have been used to simulate the X-ray spectra of
industrial X-ray tubes with filters for removing the uncertain low energy part
of the spectrum in a controlled way. The results are compared with precisely
measured X-ray spectra using a silicon drift detector. Furthermore, this paper
shows how the different dose rates in silicon and silicon dioxide layers of an
electronic device can be deduced from the simulations
Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC
While the tracking detectors of the ATLAS and CMS experiments have shown
excellent performance in Run 1 of LHC data taking, and are expected to continue
to do so during LHC operation at design luminosity, both experiments will have
to exchange their tracking systems when the LHC is upgraded to the
high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems
need to operate in an environment in which both the hit densities and the
radiation damage will be about an order of magnitude higher than today. In
addition, the new trackers need to contribute to the first level trigger in
order to maintain a high data-taking efficiency for the interesting processes.
Novel detector technologies have to be developed to meet these very challenging
goals. The German groups active in the upgrades of the ATLAS and CMS tracking
systems have formed a collaborative "Project on Enabling Technologies for
Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was
supported by the Helmholtz Alliance "Physics at the Terascale" during the years
2013 and 2014. The aim of the project was to share experience and to work
together on key areas of mutual interest during the R&D phase of these
upgrades. The project concentrated on five areas, namely exchange of
experience, radiation hardness of silicon sensors, low mass system design,
automated precision assembly procedures, and irradiations. This report
summarizes the main achievements
Real-time mapping of the subepithelial nerve plexus by in vivo confocal laser scanning microscopy
Confocal Laser Scanning Microscopy, a New In Vivo Diagnostic Tool for Schistosomiasis
BACKGROUND: The gold standard for the diagnosis of schistosomiasis is the detection of the parasite's characteristic eggs in urine, stool, or rectal and bladder biopsy specimens. Direct detection of eggs is difficult and not always possible in patients with low egg-shedding rates. Confocal laser scanning microscopy (CLSM) permits non-invasive cell imaging in vivo and is an established way of obtaining high-resolution images and 3-dimensional reconstructions. Recently, CLSM was shown to be a suitable method to visualize Schistosoma mansoni eggs within the mucosa of dissected mouse gut. In this case, we evaluated the suitability of CLSM to detect eggs of Schistosoma haematobium in a patient with urinary schistosomiasis and low egg-shedding rates. METHODOLOGY/PRINCIPAL FINDINGS: The confocal laser scanning microscope used in this study was based on a scanning laser system for imaging the retina of a living eye, the Heidelberg Retina Tomograph II, in combination with a lens system (image modality). Standard light cystoscopy was performed using a rigid cystoscope under general anaesthesia. The CLSM endoscope was then passed through the working channel of the rigid cystoscope. The mucosal tissue of the bladder was scanned using CLSM. Schistoma haematobium eggs appeared as bright structures, with the characteristic egg shape and typical terminal spine. CONCLUSION/SIGNIFICANCE: We were able to detect schistosomal eggs in the urothelium of a patient with urinary schistosomiasis. Thus, CLSM may be a suitable tool for the diagnosis of schistosomiasis in humans, especially in cases where standard diagnostic tools are not suitable
Ophthalmic magnetic resonance imaging at 7.0 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses
OBJECTIVES: This study was designed to examine the feasibility of ophthalmic magnetic resonance imaging (MRI) at 7.0 T using a local 6-channel transmit/receive radiofrequency (RF) coil array in healthy volunteers and patients with intraocular masses. MATERIALS AND METHODS: A novel 6-element transceiver RF coil array that makes uses of loop elements and that is customized for eye imaging at 7.0 T is proposed. Considerations influencing the RF coil design and the characteristics of the proposed RF coil array are presented. Numerical electromagnetic field simulations were conducted to enhance the RF coil characteristics. Specific absorption rate simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Phantom experiments were carried out to validate the electromagnetic field simulations and to assess the real performance of the proposed transceiver array. Certified approval for clinical studies was provided by a local notified body before the in vivo studies. The suitability of the RF coil to image the human eye, optical nerve, and orbit was examined in an in vivo feasibility study including (a) 3-dimensional (3D) gradient echo (GRE) imaging, (b) inversion recovery 3D GRE imaging, and (c) 2D T2-weighted fast spin-echo imaging. For this purpose, healthy adult volunteers (n = 17; mean age, 34 +- 11 years) and patients with intraocular masses (uveal melanoma, n = 5; mean age, 57 +- 6 years) were investigated. RESULTS: All subjects tolerated all examinations well with no relevant adverse events. The 6-channel coil array supports high-resolution 3D GRE imaging with a spatial resolution as good as 0.2 × 0.2 × 1.0 mm, which facilitates the depiction of anatomical details of the eye. Rather, uniform signal intensity across the eye was found. A mean signal-to-noise ratio of approximately 35 was found for the lens, whereas the vitreous humor showed a signal-to-noise ratio of approximately 30. The lens-vitreous humor contrast-to-noise ratio was 8, which allows good differentiation between the lens and the vitreous compartment. Inversion recovery prepared 3D GRE imaging using a spatial resolution of 0.4 × 0.4 × 1.0 mm was found to be feasible. T2-weighted 2D fast spin-echo imaging with the proposed RF coil afforded a spatial resolution of 0.25 × 0.25 × 0.7 mm. CONCLUSIONS: This work provides valuable information on the feasibility of ophthalmic MRI at 7.0 T using a dedicated 6-channel transceiver coil array that supports the acquisition of high-contrast, high-spatial resolution images in healthy volunteers and patients with intraocular masses. The results underscore the challenges of ocular imaging at 7.0 T and demonstrate that these issues can be offset by using tailored RF coil hardware. The benefits of such improvements would be in positive alignment with explorations that are designed to examine the potential of MRI for the assessment of spatial arrangements of the eye segments and their masses with the ultimate goal to provide imaging means for guiding treatment decisions in ophthalmological diseases
Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays
We report the first reconstruction in hadron collisions of the suppressed
decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the
CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by
the CDF II detector at the Tevatron collider. We reconstruct a signal for the
B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard
deviations, and measure the ratios of the suppressed to favored branching
fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) =
[42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm
2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) =
-0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for
B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for
Publicatio
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV
The t t-bar production cross section (sigma[t t-bar]) is measured in
proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS
experiment, corresponding to an integrated luminosity of 2.3 inverse
femtobarns. The measurement is performed in events with two leptons (electrons
or muons) in the final state, at least two jets identified as jets originating
from b quarks, and the presence of an imbalance in transverse momentum. The
measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/-
2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction
of the standard model.Comment: Replaced with published version. Included journal reference and DO
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV
The production of b jets in association with a Z/gamma* boson is studied
using proton-proton collisions delivered by the LHC at a centre-of-mass energy
of 7 TeV and recorded by the CMS detector. The inclusive cross section for
Z/gamma* + b-jet production is measured in a sample corresponding to an
integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross
section with Z/gamma* to ll (where ll = ee or mu mu) for events with the
invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level
with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and
the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.)
+(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also
studied and found to be in agreement with the predictions made by the MadGraph
event generator with the parton shower and the hadronisation performed by
PYTHIA.Comment: Submitted to the Journal of High Energy Physic
- …