9 research outputs found

    Quaternary Ammonium Compounds: Bioaccumulation Potentials in Humans and Levels in Blood before and during the Covid-19 Pandemic

    No full text
    Quaternary ammonium compounds (QACs) are commonly used in a variety of consumer, pharmaceutical, and medical products. In this study, bioaccumulation potentials of 18 QACs with alkyl chain lengths of C8–C18 were determined in the in vitro–in vivo extrapolation (IVIVE) model using the results of human hepatic metabolism and serum protein binding experiments. The slowest in vivo clearance rates were estimated for C12-QACs, suggesting that these compounds may preferentially build up in blood. The bioaccumulation of QACs was further confirmed by the analysis of human blood (sera) samples (n = 222). Fifteen out of the 18 targeted QACs were detected in blood with the ΣQAC concentrations reaching up to 68.6 ng/mL. The blood samples were collected during two distinct time periods: before the outbreak of the COVID-19 pandemic (2019; n = 111) and during the pandemic (2020, n = 111). The ΣQAC concentrations were significantly higher in samples collected during the pandemic (median 6.04 ng/mL) than in those collected before (median 3.41 ng/mL). This is the first comprehensive study on the bioaccumulation and biomonitoring of the three major QAC groups and our results provide valuable information for future epidemiological, toxicological, and risk assessment studies targeting these chemicals

    Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People

    No full text
    Per- and polyfluoroalkyl substances (PFAS) make up a large group of fluorinated organic compounds extensively used in consumer products and industrial applications. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the two perfluoroalkyl acids (PFAAs) with 8 carbons in their structure, have been phased out on a global scale because of their high environmental persistence and toxicity. As a result, shorter-chain PFAAs with less than 8 carbons in their structure are being used as their replacements and are now widely detected in the environment, raising concerns about their effects on human health. In this study, 47 PFAAs and their precursors were measured in paired samples of dust and drinking water collected from residential homes in Indiana, United States, and in blood and urine samples collected from the residents of these homes. Ultrashort- (with 2 or 3 carbons [C2–C3]) and short-chain (with 4–7 carbons [C4–C7]) PFAAs were the most abundant in all four matrices and constituted on average 69–100% of the total PFAA concentrations. Specifically, trifluoroacetic acid (TFA, C2) and perfluoropropanoic acid (PFPrA, C3) were the predominant PFAAs in most of the samples. Significant positive correlations (n = 81; r = 0.23–0.42; p < 0.05) were found between TFA, perfluorobutanoic acid (PFBA, C4), and perfluoroheptanoic acid (PFHpA, C7) concentrations in dust or water and those in serum, suggesting dust ingestion and/or drinking water consumption as important exposure pathways for these compounds. This study demonstrates that ultrashort- and short-chain PFAAs are now abundant in the indoor environment and in humans and warrants further research on potential adverse health effects of these exposures

    Evaluating a Tap Water Contamination Incident Attributed to Oil Contamination by Nontargeted Screening Strategies

    No full text
    The present study applied nontargeted screening techniques as a novel approach to evaluate the tap water samples collected during the “4.11” tap water pollution incident occurred on April 11, 2014 in Lanzhou in west China. Multivariate analysis (PCA and OPLS-DA) of about 3000 chemical features obtained in extracts of tap water samples by ultrahigh-pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) analysis showed significantly different chemical profiles in tap water from pollution regions versus reference regions during the event. These different chemical profiles in samples from different regions were not observed in samples collected during the nonpollution period. The compounds responsible for the differences in profiles between regions were identified as naphthenic acids (NAs) and oxidized NAs (oxy-NAs) after the sample extracts underwent bromination to explore saturations, dansylation to identify hydroxylations and corresponding MS/MS mode analysis. A consistent finding was further observed in the targeted analysis of NA mixtures, demonstrating that the Lanzhou “4.11” tap water pollution incident could be attributed to oil spill pollution, and NA mixtures would be a marker for oil contamination. Such evaluations can help to rapidly discriminate pollution sources in accidental pollution events and contribute to regular water monitoring management of water safety issues

    <i>p</i>,<i>p</i>′‑DDE Induces Gonadal Intersex in Japanese Medaka (<i>Oryzias latipes</i>) at Environmentally Relevant Concentrations: Comparison with <i>o</i>,<i>p</i>′‑DDT

    No full text
    Previous studies have reported high body burdens of dichlorodiphenyltrichloroethane (DDT) and its metabolites in wild fishes worldwide. This study evaluated the adverse effects of 1,1-dichloro-2,2-bis (<i>p</i>-chlorophenyl)-ethylene (<i>p</i>,<i>p</i>′-DDE) and <i>o</i>,<i>p</i>′<i>-</i>DDT on gonadal development and reproduction by exposing transgenic Japanese medaka (<i>Oryzias latipes</i>) from hatch for 100 days. While both <i>p</i>,<i>p</i>′-DDE and <i>o</i>,<i>p</i>′-DDT induced intersex in male medaka, the lowest observable effective concentration (LOEC) of <i>o</i>,<i>p</i>′-DDT was 57.7 ng/g ww, about 5-fold lower than that (272 ng/g ww) of <i>p</i>,<i>p</i>′-DDE. Since LOECs of both chemicals were comparable to the body concentrations in wild fish, DDT contamination would likely contribute to the occurrence of intersex observed in wild fish. Exposure to <i>o</i>,<i>p</i>′-DDT resulted in much higher expression of vitellogenin in liver of males than <i>p</i>,<i>p</i>′-DDE, accordant with the higher potency of <i>o</i>,<i>p</i>′-DDT than <i>p</i>,<i>p</i>′-DDE to induce intersex. This phenomenon could be partly explained by the significantly elevated levels of 17β-estradiol in plasma of males exposed to <i>o</i>,<i>p</i>′-DDT, in addition to its estrogenic activity via the estrogen receptor. Significantly lower fertilization (<i>p</i> = 0.006) and hatchability (<i>p</i> = 0.019) were observed in the 13 intersex males. This study for the first time demonstrated the induction of intersex and reproductive effects of <i>p</i>,<i>p</i>′-DDE and <i>o</i>,<i>p</i>′-DDT at environmentally relevant concentrations

    Occurrences and Behaviors of Naphthenic Acids in a Petroleum Refinery Wastewater Treatment Plant

    No full text
    Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113–392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1–8.8%. The mass reduction for total NAs and aromatic NAs was 15 ± 16% and 7.5 ± 24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65 ± 11%, aromatic NAs: 86 ± 5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low <i>Z</i> value). Removal efficiencies of total NAs were 73 ± 17% in summer, which were higher than those in winter (53 ± 15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O<sub>3</sub>–NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum effluents

    Trophodynamics of Emerging Brominated Flame Retardants in the Aquatic Food Web of Lake Taihu: Relationship with Organism Metabolism across Trophic Levels

    No full text
    Despite the increasing use and discharge of novel brominated flame retardants, little information is available about their trophodynamics in the aquatic food web, and their subsequent relationships to compound metabolism. In this study, concentrations of 2,4,6-tribromophenyl allyl ether (ATE), 1,2-dibromo-4-(1,2-dibromoethyl)­cyclohexane (TBECH), tetrabromo-o-chlorotoluene (TBCT), pentabromobenzyl acrylate (PBBA), 1,2-bis­(2,4,6-tribromophenoxy)­ethane (BTBPE), bis­(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH), and decabromodiphenyl ethane (DBDPE) were measured in 17 species, including plankton, invertebrates, and fish from Lake Taihu, South China. Trophodynamics of the compounds were assessed, and metabolic rates were measured in the liver microsomes of crucian (trophic level [TL]: 2.93), catfish (TL: 3.86), and yellow-head catfish (TL: 4.3). Significantly positive relationships were found between trophic levels and lipid-normalized concentrations of ATE, BTBPE, and TBPH; their trophic magnification factors (TMFs) were 2.85, 2.83, and 2.42, respectively. Consistently, the three chemicals were resistant to metabolism in all fish microsomes. No significant relationship was observed for βTBECH (p = 0.116), and DBDPE underwent trophic dilution in the food web (TMFs = 0.37, p = 0.021). Moreover, these two chemicals showed steady metabolism with incubation time in all fish microsomes. TBCT and PBBA exhibited significant trophic magnifications in the food web (TMF = 4.56, 2.01). Though different metabolic rates were observed for the two compounds among the tested fish species, TBCT and PBBA both showed metabolic resistance in high-trophic-level fish. These results indicated that metabolism of organisms at high trophic levels plays an important role in the assessment of trophic magnification potentials of these flame retardant chemicals

    High-Resolution Mass Spectrometry Screening of Quaternary Ammonium Compounds (QACs) in Dust from Homes and Various Microenvironments in South China

    No full text
    Despite their ubiquitous use, information regarding the presence of quaternary ammonium compounds (QACs) in various microenvironments remains scarce and only a small subset of QACs has been monitored using targeted chemical analysis. In this study, a total of 111 dust samples were collected from homes and various public settings in South China during the COVID-19 pandemic and were analyzed for traditional and emerging QACs using high-resolution mass spectrometry. The total traditional QAC concentrations in residential dust (∑traditional QAC, sum of 18 traditional QACs) ranged from 13.8 to 150 μg/g with a median concentration of 42.2 μg/g. Twenty-eight emerging QACs were identified in these samples, and the composition of ∑emerging QAC (sum of emerging QACs) to ∑QAC (sum of traditional and emerging QACs) ranged from 19 to 42% across various microenvironments, indicating the widespread existence of emerging QACs in indoor environments. Additionally, dust samples from cinemas exhibited higher ∑QAC concentrations compared to homes (medians 65.9 μg/g vs 58.3 μg/g, respectively), indicating heavier emission sources of QACs in these places. Interestingly, significantly higher ∑QAC concentrations were observed in dust from the rooms with carpets than those without (medians 65.6 μg/g vs 32.6 μg/g, p < 0.05, respectively). Overall, this study sheds light on the ubiquitous occurrence of QACs in indoor environments in South China

    Quaternary Ammonium Compounds: A Chemical Class of Emerging Concern

    No full text
    Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This work presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs’ role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the US Environmental Protection Agency’s current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects

    Quaternary Ammonium Compounds: A Chemical Class of Emerging Concern

    No full text
    Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This work presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs’ role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the US Environmental Protection Agency’s current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects
    corecore