73 research outputs found
Electroacupuncture ameliorates peptic ulcer disease in association with gastroduodenal microbiota modulation in mice
Peptic ulcer disease (PUD) is a common disease and frequently encountered in the clinic. Accumulating evidence suggests that PUD is associated with the gastrointestinal microbiota. Electroacupuncture (EA) is an improved version of acupuncture, which can improve the clinical effect by increasing the stimulation and delivering appropriate electrical pulses to needles. This method has been widely used in the treatment of peptic ulcer disease. However, its effect on gastrointestinal microbiota remains unclear. Therefore, in the present study, the ameliorative effect of EA was evaluated on the gastroduodenal mucosa, and the regulatory effect of the gastroduodenal microbiota was assessed in PUD mice. A total of 48 male Kun Ming mice were randomly divided into the following groups: normal control group (NC), PUD model group (PUD), Shousanli group (LI10), and Zusanli group (ST36) (n=12). The mice in groups LI10 and ST36 were treated with EA at LI10 and ST36, respectively. This intervention was continued for 7 days. Subsequently, we evaluated the morphological changes in the gastric and duodenal mucosa, and specific indices were measured, including the contents of serum dopamine (DA), the trefoil factor (TFF), and the vasoactive intestinal peptide (VIP). In addition, the gastric and duodenal microbiota were assessed via 16S ribosomal DNA sequencing. The results indicated that EA at LI10 or ST36 significantly reduced the injury of the gastroduodenal mucosa in PUD mice. The gastric microbial community structure of the groups LI10 and ST36 was similar to that of the NC group following comparison with the microbial community structure of the PUD model group. Moreover, the abundance of Firmicutes in the stomach was decreased, whereas that of Bacteroidetes was increased, and the abundance of Firmicutes in the duodenum was decreased. Furthermore, the microbial diversity and richness of the gastric microbiota in group LI10 were also significantly increased, and the serum dopamine and trefoil factor levels in group ST36 were significantly increased. Therefore, it is suggested that EA ameliorating PUD is in association with improving the levels of DA and TFF and regulating the relative abundances of Firmicutes and Bacteroidetes in the gastric microbiota
Phylogenetic studies of sinipercid fish (Perciformes: Sinipercidae) based on multiple genes, with first application of an immune-related gene, the virus-induced protein (viperin) gene
The sinipercid fish represent a group of 12 species of freshwater percoid fish endemic to East Asia. To date published morphological and molecular phylogenetics hypotheses of sinipercid fish are part congruent, and there are some areas of significant disagreement with respect to species relationships. The present study used separate and combined methods to analyze 7307 bp of data from three mitochondrial genes (cyt b, CO1 and 16S rRNA; approximate to 2312 bp) and three nuclear genes (viperin, the first two introns of S7 ribosomal protein gene; approximate to 4995 bp) for the attempts to estimate the relationships among sinipercids and to assess the phylogenetic utility of these markers. Phylogenetic trees were reconstructed using maximum parsimony, maximum likelihood and partitioned Bayesian analyses. Despite the detection of significant heterogeneity of phylogenetic signal between the mitochondrial and nuclear partitions, the combined data analysis represented the best-supported topology of all data. The sinipercid fish form a monophyletic group with two distinct clades, one corresponding to the genus Siniperca and the other to Coreoperca. Coreoperca whiteheadi is the sister taxon to Coreoperca herzi plus Coreoperca kawamebari. In the Siniperca, Siniperca undulata is the sister taxon to the other members of Siniperca, within the subclade containing the other members of the genus, Siniperca chuatsi and Siniperca kneri are sister species, next joined by Siniperca obscura, Siniperca roulei, Siniperca scherzeri and finally by Siniperca fortis. The potential utilities of six different genes for phylogenetic resolution of closely related sinipercid species were also evaluated, with special interest in that of the novel virus-induced protein (viperin) gene. (C) 2010 Elsevier Inc. All rights reserved
A β-cyclodextrin modified graphitic carbon nitride with Au co-catalyst for efficient photocatalytic hydrogen peroxide production
Photocatalytic hydrogen peroxide (H2O2) production has attracted considerable attention as a renewable and environment-friendly method to replace other traditional production techniques. The performance of H2O2 production remains limited by the inertness of graphitic carbon nitride (CN) towards the adsorption and activation of O2. In this work, a photocatalyst comprising of β-cyclodextrin (β-CD)-modified CN with supporting Au co-catalyst (Au/β-CD-CN) has been utilized for effective H2O2 production under visible light irradiation. The static contact angle measurement suggested that β-CD modification increased the hydrophobicity of the CN photocatalyst as well as its affinity to oxygen gas, leading to an increase in H2O2 production. The rate of H2O2 production reached more than 0.1 mM/h under visible-light irradiation. The electron spin resonance spectra indicated that H2O2 was directly formed via a 2-electron oxygen reduction reaction (ORR) over the Au/β-CD-CN photocatalyst
Efficient photocatalytic hydrogen peroxide production over TiO2 passivated by SnO2
Photocatalysis provides an attractive strategy for synthesizing H2O2 at ambient condition. However, the photocatalytic synthesis of H2O2 is still limited due to the inefficiency of photocatalysts and decomposition of H2O2 during formation. Here, we report SnO2-TiO2 heterojunction photocatalysts for synthesizing H2O2 directly in aqueous solution. The SnO2 passivation suppresses the complexation and decomposition of H2O2 on TiO2. In addition, loading of Au cocatalyst on SnO2-TiO2 heterojunction further improves the production of H2O2. The in situ electron spin resonance study revealed that the formation of H2O2 is a stepwise single electron oxygen reduction reaction (ORR) for Au and SnO2 modified TiO2 photocatalysts. We demonstrate that it is feasible to enhance H2O2 formation and suppress H2O2 decomposition by surface passivation of the H2O2-decomposition-sensitive photocatalysts
Complete Mitochondrial Genomes of Five Racerunners (Lacertidae: Eremias) and Comparison with Other Lacertids: Insights into the Structure and Evolution of the Control Region
Comparative studies on mitochondrial genomes (mitogenomes) as well as the structure and evolution of the mitochondrial control region are few in the Lacertidae family. Here, the complete mitogenomes of five individuals of Eremias scripta (2 individuals), Eremias nikolskii, Eremias szczerbaki, and Eremias yarkandensis were determined using next-generation sequencing and were compared with other lacertids available in GenBank. The circular mitogenomes comprised the standard set of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and a long non-coding control region (CR). The extent of purifying selection was less pronounced for the COIII and ND2 genes in comparison with the rest of the PCGs. The codons encoding Leucine (CUN), Threonine, and Isolecucine were the three most frequently present. The secondary structure of rRNA of Lacertidae (herein, E. scripta KZL15 as an example) comprised four domains and 28 helices for 12S rRNA, with six domains and 50 helices for 16S rRNA. Five types and twenty-one subtypes of CR in Lacertidae were described by following the criteria of the presence and position of tandem repeats (TR), termination-associated sequence 1 (TAS1), termination-associated sequence 2 (TAS2), conserved sequence block 1 (CBS1), conserved sequence block 2 (CSB2), and conserved sequence block 3 (CSB3). The compositions of conserved structural elements in four genera, Acanthodactylus, Darevskia, Eremias, and Takydromus, were further explored in detail. The base composition of TAS2 – TATACATTAT in Lacertidae was updated. In addition, the motif “TAGCGGCTTTTTTG” of tandem repeats in Eremias and the motif ”GCGGCTT” in Takydromus were presented. Nucleotide lengths between CSB2 and CSB3 remained 35 bp in Eremias and Darevskia. The phylogenetic analyses of Lacertidae recovered the higher-level relationships among the three subfamilies and corroborated a hard polytomy in the Lacertinae phylogeny. The phylogenetic position of E. nikolskii challenged the monophyly of the subgenus Pareremias within Eremias. Some mismatches between the types of CR and their phylogeny demonstrated the complicated evolutionary signals of CR such as convergent evolution. These findings will promote research on the structure and evolution of the CR and highlight the need for more mitogenomes in Lacertidae
A complete mitogenome of the Przewalski’s Wonder Gecko (Teratoscincus przewalskii) from the Junggar Basin in Northwest China with its phylogenetic implications
A complete mitogenome of the Przewalski’s Wonder Gecko (Teratoscincus przewalskii) from the Junggar Basin in Northwest China was determined by using polymerase chain reaction and directly sequenced with the primer walking method. The total length was 17,184 bp, containing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a control region (CR). The order and structure of the genes were identical to those of congeners. The 13 PCGs contain four start codons (ATG, GTG, ATA, and ATC), three complete stop codons (TAA, TAG, and AGG), and two incomplete stop codons (T–, TA-). The concatenated PCGs were used to perform Bayesian phylogenetic analyses together with mitogenome data of the family Sphaerodactylidae and related representative taxa available in GenBank. The resulting tree recovered the monophyly of Sphaerodactylidae, and confirmed the sister relationship between T. przewalskii and T. roborowskii with strong support. The newly determined mitogenome will provide fundamental data for understanding the population genetic structure of T. pzrewalskii in particular, and the mitochondrial DNA evolution in Sphaerodactylidae in general
- …