70,890 research outputs found
Mathematics at the eve of a historic transition in biology
A century ago physicists and mathematicians worked in tandem and established
quantum mechanism. Indeed, algebras, partial differential equations, group
theory, and functional analysis underpin the foundation of quantum mechanism.
Currently, biology is undergoing a historic transition from qualitative,
phenomenological and descriptive to quantitative, analytical and predictive.
Mathematics, again, becomes a driving force behind this new transition in
biology.Comment: 5 pages, 2 figure
Protein folding tames chaos
Protein folding produces characteristic and functional three-dimensional
structures from unfolded polypeptides or disordered coils. The emergence of
extraordinary complexity in the protein folding process poses astonishing
challenges to theoretical modeling and computer simulations. The present work
introduces molecular nonlinear dynamics (MND), or molecular chaotic dynamics,
as a theoretical framework for describing and analyzing protein folding. We
unveil the existence of intrinsically low dimensional manifolds (ILDMs) in the
chaotic dynamics of folded proteins. Additionally, we reveal that the
transition from disordered to ordered conformations in protein folding
increases the transverse stability of the ILDM. Stated differently, protein
folding reduces the chaoticity of the nonlinear dynamical system, and a folded
protein has the best ability to tame chaos. Additionally, we bring to light the
connection between the ILDM stability and the thermodynamic stability, which
enables us to quantify the disorderliness and relative energies of folded,
misfolded and unfolded protein states. Finally, we exploit chaos for protein
flexibility analysis and develop a robust chaotic algorithm for the prediction
of Debye-Waller factors, or temperature factors, of protein structures
TopologyNet: Topology based deep convolutional neural networks for biomolecular property predictions
Although deep learning approaches have had tremendous success in image, video
and audio processing, computer vision, and speech recognition, their
applications to three-dimensional (3D) biomolecular structural data sets have
been hindered by the entangled geometric complexity and biological complexity.
We introduce topology, i.e., element specific persistent homology (ESPH), to
untangle geometric complexity and biological complexity. ESPH represents 3D
complex geometry by one-dimensional (1D) topological invariants and retains
crucial biological information via a multichannel image representation. It is
able to reveal hidden structure-function relationships in biomolecules. We
further integrate ESPH and convolutional neural networks to construct a
multichannel topological neural network (TopologyNet) for the predictions of
protein-ligand binding affinities and protein stability changes upon mutation.
To overcome the limitations to deep learning arising from small and noisy
training sets, we present a multitask topological convolutional neural network
(MT-TCNN). We demonstrate that the present TopologyNet architectures outperform
other state-of-the-art methods in the predictions of protein-ligand binding
affinities, globular protein mutation impacts, and membrane protein mutation
impacts.Comment: 20 pages, 8 figures, 5 table
Quantitative toxicity prediction using topology based multi-task deep neural networks
The understanding of toxicity is of paramount importance to human health and
environmental protection. Quantitative toxicity analysis has become a new
standard in the field. This work introduces element specific persistent
homology (ESPH), an algebraic topology approach, for quantitative toxicity
prediction. ESPH retains crucial chemical information during the topological
abstraction of geometric complexity and provides a representation of small
molecules that cannot be obtained by any other method. To investigate the
representability and predictive power of ESPH for small molecules, ancillary
descriptors have also been developed based on physical models. Topological and
physical descriptors are paired with advanced machine learning algorithms, such
as deep neural network (DNN), random forest (RF) and gradient boosting decision
tree (GBDT), to facilitate their applications to quantitative toxicity
predictions. A topology based multi-task strategy is proposed to take the
advantage of the availability of large data sets while dealing with small data
sets. Four benchmark toxicity data sets that involve quantitative measurements
are used to validate the proposed approaches. Extensive numerical studies
indicate that the proposed topological learning methods are able to outperform
the state-of-the-art methods in the literature for quantitative toxicity
analysis. Our online server for computing element-specific topological
descriptors (ESTDs) is available at http://weilab.math.msu.edu/TopTox/Comment: arXiv admin note: substantial text overlap with arXiv:1703.1095
Tuning Hole Mobility, Concentration, and Repulsion in High- Cuprates via Apical Atoms
Using a newly developed first-principles Wannier-states approach that takes
into account large on-site Coulomb repulsion, we derive the effective
low-energy interacting Hamiltonians for several prototypical high-
superconducting cuprates. The material dependence is found to originate
primarily from the different energy of the apical atom state.
Specifically, the general properties of the low-energy hole state, namely the
Zhang-Rice singlet, are significantly modified by a triplet state associated
with this state, via additional intra-sublattice hoppings,
nearest-neighbor "super-repulsion", and other microscopic many-body processes.
Possible implications on modulation of , local superconducting gaps,
charge distribution, hole mobility, electron-phonon interaction, and
multi-layer effects are discussed.Comment: 5 pages, 3 figures, 1 tabl
- β¦