189 research outputs found

    MatchZoo: A Learning, Practicing, and Developing System for Neural Text Matching

    Full text link
    Text matching is the core problem in many natural language processing (NLP) tasks, such as information retrieval, question answering, and conversation. Recently, deep leaning technology has been widely adopted for text matching, making neural text matching a new and active research domain. With a large number of neural matching models emerging rapidly, it becomes more and more difficult for researchers, especially those newcomers, to learn and understand these new models. Moreover, it is usually difficult to try these models due to the tedious data pre-processing, complicated parameter configuration, and massive optimization tricks, not to mention the unavailability of public codes sometimes. Finally, for researchers who want to develop new models, it is also not an easy task to implement a neural text matching model from scratch, and to compare with a bunch of existing models. In this paper, therefore, we present a novel system, namely MatchZoo, to facilitate the learning, practicing and designing of neural text matching models. The system consists of a powerful matching library and a user-friendly and interactive studio, which can help researchers: 1) to learn state-of-the-art neural text matching models systematically, 2) to train, test and apply these models with simple configurable steps; and 3) to develop their own models with rich APIs and assistance

    Learning a Deep Listwise Context Model for Ranking Refinement

    Full text link
    Learning to rank has been intensively studied and widely applied in information retrieval. Typically, a global ranking function is learned from a set of labeled data, which can achieve good performance on average but may be suboptimal for individual queries by ignoring the fact that relevant documents for different queries may have different distributions in the feature space. Inspired by the idea of pseudo relevance feedback where top ranked documents, which we refer as the \textit{local ranking context}, can provide important information about the query's characteristics, we propose to use the inherent feature distributions of the top results to learn a Deep Listwise Context Model that helps us fine tune the initial ranked list. Specifically, we employ a recurrent neural network to sequentially encode the top results using their feature vectors, learn a local context model and use it to re-rank the top results. There are three merits with our model: (1) Our model can capture the local ranking context based on the complex interactions between top results using a deep neural network; (2) Our model can be built upon existing learning-to-rank methods by directly using their extracted feature vectors; (3) Our model is trained with an attention-based loss function, which is more effective and efficient than many existing listwise methods. Experimental results show that the proposed model can significantly improve the state-of-the-art learning to rank methods on benchmark retrieval corpora
    • …
    corecore