189 research outputs found
MatchZoo: A Learning, Practicing, and Developing System for Neural Text Matching
Text matching is the core problem in many natural language processing (NLP)
tasks, such as information retrieval, question answering, and conversation.
Recently, deep leaning technology has been widely adopted for text matching,
making neural text matching a new and active research domain. With a large
number of neural matching models emerging rapidly, it becomes more and more
difficult for researchers, especially those newcomers, to learn and understand
these new models. Moreover, it is usually difficult to try these models due to
the tedious data pre-processing, complicated parameter configuration, and
massive optimization tricks, not to mention the unavailability of public codes
sometimes. Finally, for researchers who want to develop new models, it is also
not an easy task to implement a neural text matching model from scratch, and to
compare with a bunch of existing models. In this paper, therefore, we present a
novel system, namely MatchZoo, to facilitate the learning, practicing and
designing of neural text matching models. The system consists of a powerful
matching library and a user-friendly and interactive studio, which can help
researchers: 1) to learn state-of-the-art neural text matching models
systematically, 2) to train, test and apply these models with simple
configurable steps; and 3) to develop their own models with rich APIs and
assistance
Learning a Deep Listwise Context Model for Ranking Refinement
Learning to rank has been intensively studied and widely applied in
information retrieval. Typically, a global ranking function is learned from a
set of labeled data, which can achieve good performance on average but may be
suboptimal for individual queries by ignoring the fact that relevant documents
for different queries may have different distributions in the feature space.
Inspired by the idea of pseudo relevance feedback where top ranked documents,
which we refer as the \textit{local ranking context}, can provide important
information about the query's characteristics, we propose to use the inherent
feature distributions of the top results to learn a Deep Listwise Context Model
that helps us fine tune the initial ranked list. Specifically, we employ a
recurrent neural network to sequentially encode the top results using their
feature vectors, learn a local context model and use it to re-rank the top
results. There are three merits with our model: (1) Our model can capture the
local ranking context based on the complex interactions between top results
using a deep neural network; (2) Our model can be built upon existing
learning-to-rank methods by directly using their extracted feature vectors; (3)
Our model is trained with an attention-based loss function, which is more
effective and efficient than many existing listwise methods. Experimental
results show that the proposed model can significantly improve the
state-of-the-art learning to rank methods on benchmark retrieval corpora
- …