841 research outputs found

    Curves, dynamical systems and weighted point counting

    Full text link
    Suppose X is a (smooth projective irreducible algebraic) curve over a finite field k. Counting the number of points on X over all finite field extensions of k will not determine the curve uniquely. Actually, a famous theorem of Tate implies that two such curves over k have the same zeta function (i.e., the same number of points over all extensions of k) if and only if their corresponding Jacobians are isogenous. We remedy this situation by showing that if, instead of just the zeta function, all Dirichlet L-series of the two curves are equal via an isomorphism of their Dirichlet character groups, then the curves are isomorphic up to "Frobenius twists", i.e., up to automorphisms of the ground field. Since L-series count points on a curve in a "weighted" way, we see that weighted point counting determines a curve. In a sense, the result solves the analogue of the isospectrality problem for curves over finite fields (also know as the "arithmetic equivalence problem"): it says that a curve is determined by "spectral" data, namely, eigenvalues of the Frobenius operator of k acting on the cohomology groups of all l-adic sheaves corresponding to Dirichlet characters. The method of proof is to shown that this is equivalent to the respective class field theories of the curves being isomorphic as dynamical systems, in a sense that we make precise.Comment: 11 page

    Toroidal automorphic forms for some function fields

    Get PDF
    Zagier introduced toroidal automorphic forms to study the zeros of zeta functions: an automorphic form on GL_2 is toroidal if all its right translates integrate to zero over all nonsplit tori in GL_2, and an Eisenstein series is toroidal if its weight is a zero of the zeta function of the corresponding field. We compute the space of such forms for the global function fields of class number one and genus g zero or one, and with a rational place. The space has dimension g and is spanned by the expected Eisenstein series. We deduce an "automorphic" proof for the Riemann hypothesis for the zeta function of those curves.Comment: 7 pages, 2 figures; v2: minor correction

    Edge reconstruction of the Ihara zeta function

    Get PDF
    We show that if a graph GG has average degree dˉ≥4\bar d \geq 4, then the Ihara zeta function of GG is edge-reconstructible. We prove some general spectral properties of the edge adjacency operator TT: it is symmetric for an indefinite form and has a "large" semi-simple part (but it can fail to be semi-simple in general). We prove that this implies that if dˉ>4\bar d>4, one can reconstruct the number of non-backtracking (closed or not) walks through a given edge, the Perron-Frobenius eigenvector of TT (modulo a natural symmetry), as well as the closed walks that pass through a given edge in both directions at least once. The appendix by Daniel MacDonald established the analogue for multigraphs of some basic results in reconstruction theory of simple graphs that are used in the main text.Comment: 19 pages, 2 pictures, in version 2 some minor changes and now including an appendix by Daniel McDonal

    Which weakly ramified group actions admit a universal formal deformation?

    Get PDF
    Consider a formal (mixed-characteristic) deformation functor D of a representation of a finite group G as automorphisms of a power series ring k[[t]] over a perfect field k of positive characteristic. Assume that the action of G is weakly ramified, i.e., the second ramification group is trivial. Examples of such representations are provided by a group action on an ordinary curve: the action of a ramification group on the completed local ring of any point on such a curve is weakly ramified. We prove that the only such D that are not pro-representable occur if k has characteristic two and G is of order two or isomorphic to a Klein group. Furthermore, we show that only the first of those has a non-pro-representable equicharacteristic deformation functor.Comment: 16 pages; further minor correction

    Elliptic divisibility sequences and undecidable problems about rational points

    Full text link
    Julia Robinson has given a first-order definition of the rational integers Z in the rational numbers Q by a formula (\forall \exists \forall \exists)(F=0) where the \forall-quantifiers run over a total of 8 variables, and where F is a polynomial. This implies that the \Sigma_5-theory of Q is undecidable. We prove that a conjecture about elliptic curves provides an interpretation of Z in Q with quantifier complexity \forall \exists, involving only one universally quantified variable. This improves the complexity of defining Z in Q in two ways, and implies that the \Sigma_3-theory, and even the \Pi_2-theory, of Q is undecidable (recall that Hilbert's Tenth Problem for Q is the question whether the \Sigma_1-theory of Q is undecidable). In short, granting the conjecture, there is a one-parameter family of hypersurfaces over Q for which one cannot decide whether or not they all have a rational point. The conjecture is related to properties of elliptic divisibility sequences on an elliptic curve and its image under rational 2-descent, namely existence of primitive divisors in suitable residue classes, and we discuss how to prove weaker-in-density versions of the conjecture and present some heuristics.Comment: 39 pages, uses calrsfs. 3rd version: many small changes, change of titl
    • …
    corecore