278 research outputs found

    Present star formation in sprials of the Virgo cluster

    Get PDF
    From a study of spiral galaxies in the Virgo Cluster (VC), it is shown that the RDDO anemics with smooth arms and no sign of present formation of (massive) stars have HI surface densities below a threshold value of 2 to 5 x 10 to the 20th power atoms/sq cm. This value is very consistent with predictions of theoretical models. It is likely that the HI disks of VC HI-deficient RDDO anemics were deeply affected by ram pressure stripping in the gaseous intracluster medium, while VC HI deficient RDDO spirals were only peripherally stripped

    The spectral appearance of primeval galaxies

    Full text link
    The current and forthcoming observations of large samples of high-redshift galaxies selected according to various photometric and spectroscopic criteria can be interpreted in the context of galaxy formation, by means of models of evolving spectral energy distributions (SEDs). We hereafter present STARDUST which gives synthetic SEDs from the far UV to the submm wavelength range. These SEDs are designed to be implemented into semi-analytic models of galaxy formation.Comment: 10 pages, Latex, 8 postscript figures, to be published in the Proceedings of the meeting ``Clustering at High Redshift'', ASP Conference Serie

    Galaxy Modelling - II. Multi-Wavelength Faint Counts from a Semi-Analytic Model of Galaxy Formation

    Full text link
    (Abridged) This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The STARDUST spectral energy distributions described in Devriendt et al. (1999) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of Ω0\Omega_0, or a flat universe with a non-zero cosmological constant. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux levels.Comment: 13 pages, 10 figures, to appear in A&

    Galaxy Modelling -- I. Spectral Energy Distributions from Far-UV to Sub-mm Wavelengths

    Full text link
    (abridged) We present STARDUST, a new self-consistent modelling of the spectral energy distributions (SEDs) of galaxies from far-UV to radio wavelengths. In order to derive the SEDs in this broad spectral range, we first couple spectrophotometric and (closed-box) chemical evolutions to account for metallicity effects on the spectra of synthetic stellar populations. We then use a phenomenological fit for the metal-dependent extinction curve and a simple geometric distribution of the dust to compute the optical depth of galaxies and the corresponding obscuration curve. This enables us to calculate the fraction of stellar light reprocessed in the infrared range. In a final step, we define a dust model with various components and we fix the weights of these components in order to reproduce the IRAS correlation of IR colours with total IR luminosities. This allows us to compute far-IR SEDs that phenomenologically mimic observed trends. We are able to predict the spectral evolution of galaxies in a broad wavelength range, and we can reproduce the observed SEDs of local spirals, starbursts, luminous infrared galaxies (LIRGs) and ultra luminous infrared galaxies (ULIRGs). This modelling is so far kept as simple as possible and depends on a small number of free parameters, namely the initial mass function (IMF), star formation rate (SFR) time scale, gas density, and galaxy age, as well as on more refined assumptions on dust properties and the presence (or absence) of gas inflows/outflows.Comment: 20 pages, 23 figures, Accepted for publication in Astronomy and Astrophysics Main Journa

    The FIR/submm window on galaxy formation

    Get PDF
    Our view on the deep universe has been so far biased towards optically bright galaxies. Now, the measurement of the Cosmic Infrared Background in FIRAS and DIRBE residuals, and the observations of FIR/submm sources by the ISOPHOT and SCUBA instruments begin unveiling the ``optically dark side'' of galaxy formation. Though the origin of dust heating is still unsolved, it appears very likely that a large fraction of the FIR/submm emission is due to heavily-extinguished star formation. Consequently, the level of the CIRB implies that about 2/3 of galaxy/star formation in the universe is hidden by dust shrouds. In this review, we introduce a new modeling of galaxy formation and evolution that provides us with specific predictions in FIR/submm wavebands. These predictions are compared with the current status of the observations. Finally, the capabilities of current and forthcoming instruments for all-sky and deep surveys of FIR/submm sources are briefly described.Comment: 10 pages, Latex, 5 postscript figures, to appear in ``The Birth of Galaxies'', 1999, B. Guiderdoni, F.R. Bouchet, T.X. Thuan & J. Tran Thanh Van (eds), Editions Frontiere

    Contribution of Galaxies to the Background Hydrogen-Ionizing Flux

    Get PDF
    We estimate the evolution of the contribution of galaxies to the cosmic background flux at 912A˚912 \AA by means of a semi-analytic model of galaxy formation and evolution. Such a modelling has been quite successful in reproducing the optical properties of galaxies. We assume hereafter the high-redshift damped Lyman-α\alpha (DLA) systems to be the progenitors of present day galaxies, and we design a series of models which are consistent with the evolution of cosmic comoving emissivities in the available near infrared (NIR), optical, ultraviolet (UV), and far infrared (FIR) bands along with the evolution of the neutral hydrogen content and average metallicity of damped Lyman-α\alpha systems (DLA). We use these models to compute the galactic contribution to the Lyman-limit emissivity and background flux for 0z40 \simeq z \le 4. We take into account the absorption of Lyman-limit photons by HI and dust in the interstellar medium (ISM) of the galaxies. We find that the background Lyman-limit flux due to galaxies might dominate (or be comparable to) the contribution from quasars at almost all redshifts if the absorption by HI in the ISM is neglected. The ISM HI absorption results in a severe diminishing of this flux--by almost three orders of magnitude at high redshifts to between one and two orders at z0z \simeq 0. Though the resulting galaxy flux is completely negligible at high redshifts, it is comparable to the quasar flux at z0z \simeq 0.Comment: 14 pages, 5 figures, requires mn.sty, accepted for publication in MNRA
    corecore