900 research outputs found

    Quantum dynamics of a dc-SQUID coupled to an asymmetric Cooper pair transistor

    Full text link
    We present a theoretical analysis of the quantum dynamics of a superconducting circuit based on a highly asymmetric Cooper pair transistor (ACPT) in parallel to a dc-SQUID. Starting from the full Hamiltonian we show that the circuit can be modeled as a charge qubit (ACPT) coupled to an anharmonic oscillator (dc-SQUID). Depending on the anharmonicity of the SQUID, the Hamiltonian can be reduced either to one that describes two coupled qubits or to the Jaynes-Cummings Hamiltonian. Here the dc-SQUID can be viewed as a tunable micron-size resonator. The coupling term, which is a combination of a capacitive and a Josephson coupling between the two qubits, can be tuned from the very strong- to the zero-coupling regimes. It describes very precisely the tunable coupling strength measured in this circuit and explains the 'quantronium' as well as the adiabatic quantum transfer read-out.Comment: 20 page

    Measurement of the Current-Phase Relation in Josephson Junctions Rhombi Chains

    Full text link
    We present low temperature transport measurements in one dimensional Josephson junctions rhombi chains. We have measured the current phase relation of a chain of 8 rhombi. The junctions are either in the classical phase regime with the Josephson energy much larger than the charging energy, EJ≫ECE_{J}\gg E_{C}, or in the quantum phase regime where EJ/EC≈2E_{J}/E_{C}\approx 2. In the strong Josephson coupling regime (EJ≫EC≫kBTE_{J}\gg E_{C} \gg k_{B}T) we observe a sawtooth-like supercurrent as a function of the phase difference over the chain. The period of the supercurrent oscillations changes abruptly from one flux quantum Φ0\Phi_{0} to half the flux quantum Φ0/2\Phi_{0}/2 as the rhombi are tuned in the vicinity of full frustration. The main observed features can be understood from the complex energy ground state of the chain. For EJ/EC≈2E_{J}/E_{C}\approx 2 we do observe a dramatic suppression and rounding of the switching current dependence which we found to be consistent with the model developed by Matveev et al.(Phys. Rev. Lett. {\bf 89}, 096802(2002)) for long Josephson junctions chains.Comment: to appear in Phys. Rev.

    A V-shape superconducting artificial atom based on two inductively coupled transmons

    Full text link
    Circuit quantum electrodynamics systems are typically built from resonators and two-level artificial atoms, but the use of multi-level artificial atoms instead can enable promising applications in quantum technology. Here we present an implementation of a Josephson junction circuit dedicated to operate as a V-shape artificial atom. Based on a concept of two internal degrees of freedom, the device consists of two transmon qubits coupled by an inductance. The Josephson nonlinearity introduces a strong diagonal coupling between the two degrees of freedom that finds applications in quantum non-demolition readout schemes, and in the realization of microwave cross-Kerr media based on superconducting circuits.Comment: 5 pages, 3 figure

    Phase-charge duality in Josephson junction circuits: Role of inertia and effect of microwave irradiation

    Full text link
    We investigate the physics of coherent quantum phase slips in two distinct circuits containing small Josephson junctions: (i) a single junction embedded in an inductive environment and (ii) a long chain of junctions. Starting from the standard Josephson Hamiltonian, the single junction circuit can be analyzed using quasi-classical methods; we formulate the conditions under which the resulting quasi-charge dynamics is exactly dual to the usual phase dynamics associated with Josephson tunneling. For the chain we use the fact that its collective behavior can be characterized by one variable: the number mm of quantum phase slips present on it. We conclude that the dynamics of the conjugate quasi-charge is again exactly dual to the standard phase dynamics of a single Josephson junction. In both cases we elucidate the role of the inductance, essential to obtain exact duality. These conclusions have profound consequences for the behavior of single junctions and chains under microwave irradiation. Since both systems are governed by a model exactly dual to the standard resistively and capacitively shunted junction model, we expect the appearance of current-Shapiro steps. We numerically calculate the corresponding current-voltage characteristics in a wide range of parameters. Our results are of interest in view of a metrological current standard

    Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit

    Full text link
    A neutral quantum particle with magnetic moment encircling a static electric charge acquires a quantum mechanical phase (Aharonov-Casher effect). In superconducting electronics the neutral particle becomes a fluxon that moves around superconducting islands connected by Josephson junctions. The full understanding of this effect in systems of many junctions is crucial for the design of novel quantum circuits. Here we present measurements and quantitative analysis of fluxon interference patterns in a six Josephson junction chain. In this multi-junction circuit the fluxon can encircle any combination of charges on five superconducting islands, resulting in a complex pattern. We compare the experimental results with predictions of a simplified model that treats fluxons as independent excitations and with the results of the full diagonalization of the quantum problem. Our results demonstrate the accuracy of the fluxon interference description and the quantum coherence of these arrays

    Kerr coefficients of plasma resonances in Josephson junction chains

    Full text link
    We present an experimental and theoretical analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. We calculate the Kerr coefficients by deriving and diagonalizing the Hamiltonian of a linear circuit model for the chain and then adding the Josephson non-linearity as a perturbation. The calculated Kerr-coefficients are compared with the measurement data of a chain of 200 junctions. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power on a low signal level, we are able to measure this shift. The photon number is calibrated using the self-Kerr shift calculated from the sample parameters. We then compare the measured cross-Kerr shift with the theoretical prediction, using the calibrated photon number.Comment: 10 pages, 9 figure

    Phase-Charge Duality of a Josephson junction in a fluctuating electromagnetic environment

    Full text link
    We have measured the current-voltage characteristics of a single Josephson junction placed in a high impedance environment. The transfer of Cooper pairs through the junction is governed by overdamped quasicharge dynamics, leading to Coulomb blockade and Bloch oscillations. Exact duality exists to the standard overdamped phase dynamics of a Josephson junction, resulting in a dual shape of the current-voltage characteristic, with current and voltage changing roles. We demonstrate this duality with experiments which allow for a quantitative comparison with a theory that includes the effect of fluctuations due to finite temperature of the electromagnetic environment

    Fast high fidelity quantum non-demolition qubit readout via a non-perturbative cross-Kerr coupling

    Full text link
    Qubit readout is an indispensable element of any quantum information processor. In this work, we experimentally demonstrate a non-perturbative cross-Kerr coupling between a transmon and a polariton mode which enables an improved quantum non-demolition (QND) readout for superconducting qubits. The new mechanism uses the same experimental techniques as the standard QND qubit readout in the dispersive approximation, but due to its non-perturbative nature, it maximizes the speed, the single-shot fidelity and the QND properties of the readout. In addition, it minimizes the effect of unwanted decay channels such as the Purcell effect. We observed a single-shot readout fidelity of 97.4% for short 50 ns pulses, and we quantified a QND-ness of 99% for long measurement pulses with repeated single-shot readouts
    • …