533 research outputs found
Scalable Semidefinite Relaxation for Maximum A Posterior Estimation
Maximum a posteriori (MAP) inference over discrete Markov random fields is a
fundamental task spanning a wide spectrum of real-world applications, which is
known to be NP-hard for general graphs. In this paper, we propose a novel
semidefinite relaxation formulation (referred to as SDR) to estimate the MAP
assignment. Algorithmically, we develop an accelerated variant of the
alternating direction method of multipliers (referred to as SDPAD-LR) that can
effectively exploit the special structure of the new relaxation. Encouragingly,
the proposed procedure allows solving SDR for large-scale problems, e.g.,
problems on a grid graph comprising hundreds of thousands of variables with
multiple states per node. Compared with prior SDP solvers, SDPAD-LR is capable
of attaining comparable accuracy while exhibiting remarkably improved
scalability, in contrast to the commonly held belief that semidefinite
relaxation can only been applied on small-scale MRF problems. We have evaluated
the performance of SDR on various benchmark datasets including OPENGM2 and PIC
in terms of both the quality of the solutions and computation time.
Experimental results demonstrate that for a broad class of problems, SDPAD-LR
outperforms state-of-the-art algorithms in producing better MAP assignment in
an efficient manner.Comment: accepted to International Conference on Machine Learning (ICML 2014
Compressive Network Analysis
Modern data acquisition routinely produces massive amounts of network data.
Though many methods and models have been proposed to analyze such data, the
research of network data is largely disconnected with the classical theory of
statistical learning and signal processing. In this paper, we present a new
framework for modeling network data, which connects two seemingly different
areas: network data analysis and compressed sensing. From a nonparametric
perspective, we model an observed network using a large dictionary. In
particular, we consider the network clique detection problem and show
connections between our formulation with a new algebraic tool, namely Randon
basis pursuit in homogeneous spaces. Such a connection allows us to identify
rigorous recovery conditions for clique detection problems. Though this paper
is mainly conceptual, we also develop practical approximation algorithms for
solving empirical problems and demonstrate their usefulness on real-world
datasets
FrameNet: Learning Local Canonical Frames of 3D Surfaces from a Single RGB Image
In this work, we introduce the novel problem of identifying dense canonical
3D coordinate frames from a single RGB image. We observe that each pixel in an
image corresponds to a surface in the underlying 3D geometry, where a canonical
frame can be identified as represented by three orthogonal axes, one along its
normal direction and two in its tangent plane. We propose an algorithm to
predict these axes from RGB. Our first insight is that canonical frames
computed automatically with recently introduced direction field synthesis
methods can provide training data for the task. Our second insight is that
networks designed for surface normal prediction provide better results when
trained jointly to predict canonical frames, and even better when trained to
also predict 2D projections of canonical frames. We conjecture this is because
projections of canonical tangent directions often align with local gradients in
images, and because those directions are tightly linked to 3D canonical frames
through projective geometry and orthogonality constraints. In our experiments,
we find that our method predicts 3D canonical frames that can be used in
applications ranging from surface normal estimation, feature matching, and
augmented reality
Separation-Sensitive Collision Detection for Convex Objects
We develop a class of new kinetic data structures for collision detection
between moving convex polytopes; the performance of these structures is
sensitive to the separation of the polytopes during their motion. For two
convex polygons in the plane, let be the maximum diameter of the polygons,
and let be the minimum distance between them during their motion. Our
separation certificate changes times when the relative motion of
the two polygons is a translation along a straight line or convex curve,
for translation along an algebraic trajectory, and for
algebraic rigid motion (translation and rotation). Each certificate update is
performed in time. Variants of these data structures are also
shown that exhibit \emph{hysteresis}---after a separation certificate fails,
the new certificate cannot fail again until the objects have moved by some
constant fraction of their current separation. We can then bound the number of
events by the combinatorial size of a certain cover of the motion path by
balls.Comment: 10 pages, 8 figures; to appear in Proc. 10th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1999; see also
http://www.uiuc.edu/ph/www/jeffe/pubs/kollide.html ; v2 replaces submission
with camera-ready versio
- …