941 research outputs found

    Massive molecular outflows at high spatial resolution

    Full text link
    We present high-spatial resolution Plateau de Bure Interferometer CO(2-1) and SiO(2-1) observations of one intermediate-mass and one high-mass star-forming region. The intermediate-mass region IRAS20293+3952 exhibits four molecular outflows, one being as collimated as the highly collimated jet-like outflows observed in low-mass star formation sources. Furthermore, comparing the data with additional infrared H2 and cm observations we see indications that the nearby ultracompact HII region triggers a shock wave interacting with the outflow. The high-mass region IRAS19217+1651 exhibits a bipolar outflow as well and the region is dominated by the central driving source. Adding two more sources from the literature, we compare position-velocity diagrams of the intermediate- to high-mass sources with previous studies in the low-mass regime. We find similar kinematic signatures, some sources can be explained by jet-driven outflows whereas other are better constrained by wind-driven models. The data also allow to estimate accretion rates varying from a few times 10^{-5}Msun/yr for the intermediate-mass sources to a few times 10^{-4}Msun/yr for the high-mass source, consistent with models explaining star formation of all masses via accretion processes.Comment: 14 pages text, 4 tables, 8 figures, accepted for Ap

    Interferometric Detection of Planets/Gaps in Protoplanetary Disks

    Get PDF
    We investigate the possibility to find evidence for planets in circumstellar disks by infrared and submillimeter interferometry. Hydrodynamical simulations of a circumstellar disk around a solar-type star with an embedded planet of 1 Jupiter mass are presented. On the basis of 3D radiative transfer simulations, images of this system are calculated. These intensity maps provide the basis for the simulation of the interferometers VLTI (equipped with the mid-infrared instrument MIDI) and ALMA. While ALMA will provide the necessary basis for a direct gap and therefore indirect planet detection, MIDI/VLTI will provide the possibility to distinguish between disks with or without accretion on the central star on the basis of visibility measurements.Comment: 4 pages, TeX (or Latex, etc); to appear in proceedings of "Scientific Frontiers in Research on Extrasolar Planets

    How Hot is the Wind from TW Hydrae?

    Get PDF
    It has recently been suggested that the winds from Classical T Tauri stars in general, and the wind from TW Hya in particular, reaches temperatures of at least 300,000 K while maintaing a mass loss rate of ∌10−11\sim 10^{-11} \Msol yr−1^{-1} or larger. If confirmed, this would place strong new requirements on wind launching and heating models. We therefore re-examine spectra from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and spectra from the Far Ultraviolet Spectroscopic Explorer satellite in an effort to better constrain the maximum temperature in the wind of TW Hya. We find clear evidence for a wind in the \ion{C}{2} doublet at 1037 \AA and in the \ion{C}{2} multiplet at 1335 \AA. We find no wind absorption in the \ion{C}{4} 1550 \AA doublet observed at the same time as the \ion{C}{2} 1335 \AA line or in observations of \ion{O}{6} observed simultaneously with the \ion{C}{2} 1037 \AA line. The presence or absence of \ion{C}{3} wind absorption is ambiguous. The clear lack of a wind in the \ion{C}{4} line argues that the wind from TW Hya does not reach the 100,000 K characteristic formation temperature of this line. We therefore argue that the available evidence suggests that the wind from TW Hya, and probably all classical T Tauri stars, reaches a maximum temperature in the range of 10,000 -- 30,000 K.Comment: 17 pages, 3 figures, Figure 1 in 2nd version fixes a small velocity scaling error and new revision adds a reference to an additional paper recently foun

    Detecting planets in protoplanetary disks: A prospective study

    Get PDF
    We investigate the possibility to find evidence for planets in circumstellar disks by infrared and submillimeter interferometry. We present simulations of a circumstellar disk around a solar-type star with an embedded planet of 1 Jupiter mass. The three-dimensional (3D) density structure of the disk results from hydrodynamical simulations. On the basis of 3D radiative transfer simulations, images of this system were calculated. The intensity maps provide the basis for the simulation of the interferometers VLTI (equipped with the mid-infrared instrument MIDI) and ALMA. While MIDI/VLTI will not provide the possibility to distinguish between disks with or without a gap on the basis of visibility measurements, ALMA will provide the necessary basis for a direct gap detection.Comment: 5 page

    Infall and Outflow around the HH 212 protostellar system

    Full text link
    HH 212 is a highly collimated jet discovered in H2 powered by a young Class 0 source, IRAS 05413-0104, in the L1630 cloud of Orion. We have mapped around it in 1.33 mm continuum, 12CO (J=2−1J=2-1), 13CO (J=2−1J=2-1), C18O (J=2−1J=2-1), and SO (JK=65−54J_K = 6_5-5_4) emission at ∌\sim \arcs{2.5} resolution with the Submillimeter Array. A dust core is seen in the continuum around the source. A flattened envelope is seen in C18O around the source in the equator perpendicular to the jet axis, with its inner part seen in 13CO. The structure and kinematics of the envelope can be roughly reproduced by a simple edge-on disk model with both infall and rotation. In this model, the density of the disk is assumed to have a power-law index of p=−1.5p=-1.5 or -2, as found in other low-mass envelopes. The envelope seems dynamically infalling toward the source with slow rotation because the kinematics is found to be roughly consistent with a free fall toward the source plus a rotation of a constant specific angular momentum. A 12CO outflow is seen surrounding the H2 jet, with a narrow waist around the source. Jetlike structures are also seen in 12CO near the source aligned with the H2 jet at high velocities. The morphological relationship between the H2 jet and the 12CO outflow, and the kinematics of the 12CO outflow along the jet axis are both consistent with those seen in a jet-driven bow shock model. SO emission is seen around the source and the H2 knotty shocks in the south, tracing shocked emission around them.Comment: 17 pages, 11 figures, Accepted by the Ap

    The ortho-to-para ratio of ammonia in the L1157 outflow

    Get PDF
    We have measured the ortho-to-para ratio of ammonia in the blueshifted gas of the L1157 outflow by observing the six metastable inversion lines from (J, K) = (1, 1) to (6, 6). The highly excited (5, 5) and (6, 6) lines were first detected in the low-mass star forming regions. The rotational temperature derived from the ratio of four transition lines from (3, 3) to (6, 6) is 130-140 K, suggesting that the blueshifted gas is heated by a factor of ~10 as compared to the quiescent gas. The ortho-to-para ratio of the NH3 molecules in the blueshifted gas is estimated to be 1.3--1.7, which is higher than the statistical equilibrium value. This ratio provides us with evidence that the NH3 molecules have been evaporated from dust grains with the formation temperature between 18 and 25 K. It is most likely that the NH3 molecules on dust grains have been released into the gas phase through the passage of strong shock waves produced by the outflow. Such a scenario is supported by the fact that the ammonia abundance in the blueshifted gas is enhanced by a factor of ~5 with respect to the dense quiescent gas.Comment: 16 pages, including 3 PS figures. To appear in the ApJ (Letters). aastex macro

    First results from the CALYPSO IRAM-PdBI survey. I. Kinematics of the inner envelope of NGC1333-IRAS2A

    Full text link
    The structure and kinematics of Class 0 protostars on scales of a few hundred AU is poorly known. Recent observations have revealed the presence of Keplerian disks with a diameter of 150-180 AU in L1527-IRS and VLA1623A, but it is not clear if such disks are common in Class 0 protostars. Here we present high-angular-resolution observations of two methanol lines in NGC1333-IRAS2A. We argue that these lines probe the inner envelope, and we use them to study the kinematics of this region. Our observations suggest the presence of a marginal velocity gradient normal to the direction of the outflow. However, the position velocity diagrams along the gradient direction appear inconsistent with a Keplerian disk. Instead, we suggest that the emission originates from the infalling and perhaps slowly rotating envelope, around a central protostar of 0.1-0.2 M⊙_\odot. If a disk is present, it is smaller than the disk of L1527-IRS, perhaps suggesting that NGC1333-IRAS2A is younger.Comment: Accepted for publication in A&A letter
    • 

    corecore