1 research outputs found
Complexity of primal-dual interior-point algorithm for linear programming based on a new class of kernel functions
summary:In this paper, we first present a polynomial-time primal-dual interior-point method (IPM) for solving linear programming (LP) problems, based on a new kernel function (KF) with a hyperbolic-logarithmic barrier term. To improve the iteration bound, we propose a parameterized version of this function. We show that the complexity result meets the currently best iteration bound for large-update methods by choosing a special value of the parameter. Numerical experiments reveal that the new KFs have better results comparing with the existing KFs including in their barrier term. To the best of our knowledge, this is the first IPM based on a parameterized hyperbolic-logarithmic KF. Moreover, it contains the first hyperbolic-logarithmic KF (Touil and Chikouche in Filomat 34:3957-3969, 2020) as a special case up to a multiplicative constant, and improves significantly both its theoretical and practical results